Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
2 |
|
angrtmuld.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
3 |
|
angrtmuld.2 |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
4 |
|
angrtmuld.3 |
⊢ ( 𝜑 → 𝑍 ∈ ℂ ) |
5 |
|
angrtmuld.4 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
6 |
|
angrtmuld.5 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
7 |
|
angrtmuld.6 |
⊢ ( 𝜑 → 𝑍 ≠ 0 ) |
8 |
|
angrtmuld.7 |
⊢ ( 𝜑 → ( 𝑍 / 𝑌 ) ∈ ℝ ) |
9 |
4 3 7 6
|
divne0d |
⊢ ( 𝜑 → ( 𝑍 / 𝑌 ) ≠ 0 ) |
10 |
9
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑍 / 𝑌 ) = 0 ) |
11 |
|
biorf |
⊢ ( ¬ ( 𝑍 / 𝑌 ) = 0 → ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ↔ ( ( 𝑍 / 𝑌 ) = 0 ∨ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ↔ ( ( 𝑍 / 𝑌 ) = 0 ∨ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) ) |
13 |
1 2 5 3 6
|
angrteqvd |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ↔ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) |
14 |
1 2 5 4 7
|
angrteqvd |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑍 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ↔ ( ℜ ‘ ( 𝑍 / 𝑋 ) ) = 0 ) ) |
15 |
4 3 2 6 5
|
dmdcan2d |
⊢ ( 𝜑 → ( ( 𝑍 / 𝑌 ) · ( 𝑌 / 𝑋 ) ) = ( 𝑍 / 𝑋 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝑍 / 𝑌 ) · ( 𝑌 / 𝑋 ) ) ) = ( ℜ ‘ ( 𝑍 / 𝑋 ) ) ) |
17 |
3 2 5
|
divcld |
⊢ ( 𝜑 → ( 𝑌 / 𝑋 ) ∈ ℂ ) |
18 |
8 17
|
remul2d |
⊢ ( 𝜑 → ( ℜ ‘ ( ( 𝑍 / 𝑌 ) · ( 𝑌 / 𝑋 ) ) ) = ( ( 𝑍 / 𝑌 ) · ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ) ) |
19 |
16 18
|
eqtr3d |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑍 / 𝑋 ) ) = ( ( 𝑍 / 𝑌 ) · ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑍 / 𝑋 ) ) = 0 ↔ ( ( 𝑍 / 𝑌 ) · ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ) = 0 ) ) |
21 |
4 3 6
|
divcld |
⊢ ( 𝜑 → ( 𝑍 / 𝑌 ) ∈ ℂ ) |
22 |
17
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ∈ ℂ ) |
24 |
21 23
|
mul0ord |
⊢ ( 𝜑 → ( ( ( 𝑍 / 𝑌 ) · ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ) = 0 ↔ ( ( 𝑍 / 𝑌 ) = 0 ∨ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) ) |
25 |
14 20 24
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑍 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ↔ ( ( 𝑍 / 𝑌 ) = 0 ∨ ( ℜ ‘ ( 𝑌 / 𝑋 ) ) = 0 ) ) ) |
26 |
12 13 25
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ↔ ( 𝑋 𝐹 𝑍 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |