Metamath Proof Explorer


Theorem anidmdbi

Description: Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005)

Ref Expression
Assertion anidmdbi ( ( 𝜑 → ( 𝜓𝜓 ) ) ↔ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 anidm ( ( 𝜓𝜓 ) ↔ 𝜓 )
2 1 imbi2i ( ( 𝜑 → ( 𝜓𝜓 ) ) ↔ ( 𝜑𝜓 ) )