Metamath Proof Explorer


Theorem anim12dan

Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses anim12dan.1 ( ( 𝜑𝜓 ) → 𝜒 )
anim12dan.2 ( ( 𝜑𝜃 ) → 𝜏 )
Assertion anim12dan ( ( 𝜑 ∧ ( 𝜓𝜃 ) ) → ( 𝜒𝜏 ) )

Proof

Step Hyp Ref Expression
1 anim12dan.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 anim12dan.2 ( ( 𝜑𝜃 ) → 𝜏 )
3 1 ex ( 𝜑 → ( 𝜓𝜒 ) )
4 2 ex ( 𝜑 → ( 𝜃𝜏 ) )
5 3 4 anim12d ( 𝜑 → ( ( 𝜓𝜃 ) → ( 𝜒𝜏 ) ) )
6 5 imp ( ( 𝜑 ∧ ( 𝜓𝜃 ) ) → ( 𝜒𝜏 ) )