Description: A conjunction with a negated conjunction. (Contributed by AV, 8-Mar-2022) (Proof shortened by Wolf Lammen, 1-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | annotanannot | ⊢ ( ( 𝜑 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ibar | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) | 
| 3 | 2 | notbid | ⊢ ( 𝜑 → ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ 𝜓 ) ) | 
| 4 | 3 | pm5.32i | ⊢ ( ( 𝜑 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) |