Metamath Proof Explorer


Theorem anor

Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 3-Nov-2012)

Ref Expression
Assertion anor ( ( 𝜑𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 notnotb ( ( 𝜑𝜓 ) ↔ ¬ ¬ ( 𝜑𝜓 ) )
2 ianor ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )
3 1 2 xchbinx ( ( 𝜑𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )