Metamath Proof Explorer


Theorem antisymressn

Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024)

Ref Expression
Assertion antisymressn 𝑥𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 brressn ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴𝑥 𝑅 𝑦 ) ) )
2 1 el2v ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴𝑥 𝑅 𝑦 ) )
3 2 simplbi ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑥 = 𝐴 )
4 brressn ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑦 = 𝐴𝑦 𝑅 𝑥 ) ) )
5 4 el2v ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑦 = 𝐴𝑦 𝑅 𝑥 ) )
6 5 simplbi ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥𝑦 = 𝐴 )
7 eqtr3 ( ( 𝑥 = 𝐴𝑦 = 𝐴 ) → 𝑥 = 𝑦 )
8 3 6 7 syl2an ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 )
9 8 gen2 𝑥𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 )