Step |
Hyp |
Ref |
Expression |
1 |
|
brressn |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) ) |
2 |
1
|
el2v |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
3 |
2
|
simplbi |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 → 𝑥 = 𝐴 ) |
4 |
|
brressn |
⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑥 ) ) ) |
5 |
4
|
el2v |
⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑥 ) ) |
6 |
5
|
simplbi |
⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 → 𝑦 = 𝐴 ) |
7 |
|
eqtr3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → 𝑥 = 𝑦 ) |
8 |
3 6 7
|
syl2an |
⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) |
9 |
8
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) |