Description: Lemma for dfac11 . This is the beginning of the proof that multiple choice is equivalent to choice. Our goal is to construct, by transfinite recursion, a well-ordering of ( R1A ) . In what follows, A is the index of the rank we wish to well-order, z is the collection of well-orderings constructed so far, dom z is the set of ordinal indices of constructed ranks i.e. the next rank to construct, and y is a postulated multiple-choice function.
Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aomclem1.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
aomclem1.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | ||
aomclem1.su | ⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) | ||
aomclem1.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | ||
Assertion | aomclem1 | ⊢ ( 𝜑 → 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aomclem1.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
2 | aomclem1.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | |
3 | aomclem1.su | ⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) | |
4 | aomclem1.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | |
5 | fvex | ⊢ ( 𝑅1 ‘ ∪ dom 𝑧 ) ∈ V | |
6 | vex | ⊢ 𝑧 ∈ V | |
7 | 6 | dmex | ⊢ dom 𝑧 ∈ V |
8 | 7 | uniex | ⊢ ∪ dom 𝑧 ∈ V |
9 | 8 | sucid | ⊢ ∪ dom 𝑧 ∈ suc ∪ dom 𝑧 |
10 | 9 3 | eleqtrrid | ⊢ ( 𝜑 → ∪ dom 𝑧 ∈ dom 𝑧 ) |
11 | fveq2 | ⊢ ( 𝑎 = ∪ dom 𝑧 → ( 𝑧 ‘ 𝑎 ) = ( 𝑧 ‘ ∪ dom 𝑧 ) ) | |
12 | fveq2 | ⊢ ( 𝑎 = ∪ dom 𝑧 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ ∪ dom 𝑧 ) ) | |
13 | 11 12 | weeq12d | ⊢ ( 𝑎 = ∪ dom 𝑧 → ( ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ↔ ( 𝑧 ‘ ∪ dom 𝑧 ) We ( 𝑅1 ‘ ∪ dom 𝑧 ) ) ) |
14 | 13 | rspcva | ⊢ ( ( ∪ dom 𝑧 ∈ dom 𝑧 ∧ ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) → ( 𝑧 ‘ ∪ dom 𝑧 ) We ( 𝑅1 ‘ ∪ dom 𝑧 ) ) |
15 | 10 4 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑧 ‘ ∪ dom 𝑧 ) We ( 𝑅1 ‘ ∪ dom 𝑧 ) ) |
16 | 1 | wepwso | ⊢ ( ( ( 𝑅1 ‘ ∪ dom 𝑧 ) ∈ V ∧ ( 𝑧 ‘ ∪ dom 𝑧 ) We ( 𝑅1 ‘ ∪ dom 𝑧 ) ) → 𝐵 Or 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) |
17 | 5 15 16 | sylancr | ⊢ ( 𝜑 → 𝐵 Or 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) |
18 | 3 | fveq2d | ⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ suc ∪ dom 𝑧 ) ) |
19 | onuni | ⊢ ( dom 𝑧 ∈ On → ∪ dom 𝑧 ∈ On ) | |
20 | r1suc | ⊢ ( ∪ dom 𝑧 ∈ On → ( 𝑅1 ‘ suc ∪ dom 𝑧 ) = 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) | |
21 | 2 19 20 | 3syl | ⊢ ( 𝜑 → ( 𝑅1 ‘ suc ∪ dom 𝑧 ) = 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) |
22 | 18 21 | eqtrd | ⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) = 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) |
23 | soeq2 | ⊢ ( ( 𝑅1 ‘ dom 𝑧 ) = 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) → ( 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐵 Or 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) ) | |
24 | 22 23 | syl | ⊢ ( 𝜑 → ( 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐵 Or 𝒫 ( 𝑅1 ‘ ∪ dom 𝑧 ) ) ) |
25 | 17 24 | mpbird | ⊢ ( 𝜑 → 𝐵 Or ( 𝑅1 ‘ dom 𝑧 ) ) |