| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aomclem2.b | ⊢ 𝐵  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  ( 𝑅1 ‘ ∪  dom  𝑧 ) ( ( 𝑐  ∈  𝑏  ∧  ¬  𝑐  ∈  𝑎 )  ∧  ∀ 𝑑  ∈  ( 𝑅1 ‘ ∪  dom  𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪  dom  𝑧 ) 𝑐  →  ( 𝑑  ∈  𝑎  ↔  𝑑  ∈  𝑏 ) ) ) } | 
						
							| 2 |  | aomclem2.c | ⊢ 𝐶  =  ( 𝑎  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 ) ) | 
						
							| 3 |  | aomclem2.on | ⊢ ( 𝜑  →  dom  𝑧  ∈  On ) | 
						
							| 4 |  | aomclem2.su | ⊢ ( 𝜑  →  dom  𝑧  =  suc  ∪  dom  𝑧 ) | 
						
							| 5 |  | aomclem2.we | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  dom  𝑧 ( 𝑧 ‘ 𝑎 )  We  ( 𝑅1 ‘ 𝑎 ) ) | 
						
							| 6 |  | aomclem2.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 7 |  | aomclem2.za | ⊢ ( 𝜑  →  dom  𝑧  ⊆  𝐴 ) | 
						
							| 8 |  | aomclem2.y | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) ) ) | 
						
							| 9 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 10 | 3 6 | jca | ⊢ ( 𝜑  →  ( dom  𝑧  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 11 |  | r1ord3 | ⊢ ( ( dom  𝑧  ∈  On  ∧  𝐴  ∈  On )  →  ( dom  𝑧  ⊆  𝐴  →  ( 𝑅1 ‘ dom  𝑧 )  ⊆  ( 𝑅1 ‘ 𝐴 ) ) ) | 
						
							| 12 | 10 7 11 | sylc | ⊢ ( 𝜑  →  ( 𝑅1 ‘ dom  𝑧 )  ⊆  ( 𝑅1 ‘ 𝐴 ) ) | 
						
							| 13 | 12 | sspwd | ⊢ ( 𝜑  →  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ⊆  𝒫  ( 𝑅1 ‘ 𝐴 ) ) | 
						
							| 14 | 13 | sseld | ⊢ ( 𝜑  →  ( 𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  →  𝑎  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ) ) | 
						
							| 15 |  | rsp | ⊢ ( ∀ 𝑎  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) )  →  ( 𝑎  ∈  𝒫  ( 𝑅1 ‘ 𝐴 )  →  ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) ) ) ) | 
						
							| 16 | 8 14 15 | sylsyld | ⊢ ( 𝜑  →  ( 𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  →  ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) ) ) ) | 
						
							| 17 | 16 | 3imp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) ) | 
						
							| 18 | 17 | eldifad | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑦 ‘ 𝑎 )  ∈  ( 𝒫  𝑎  ∩  Fin ) ) | 
						
							| 19 |  | inss1 | ⊢ ( 𝒫  𝑎  ∩  Fin )  ⊆  𝒫  𝑎 | 
						
							| 20 | 19 | sseli | ⊢ ( ( 𝑦 ‘ 𝑎 )  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑦 ‘ 𝑎 )  ∈  𝒫  𝑎 ) | 
						
							| 21 | 20 | elpwid | ⊢ ( ( 𝑦 ‘ 𝑎 )  ∈  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝑦 ‘ 𝑎 )  ⊆  𝑎 ) | 
						
							| 22 | 18 21 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑦 ‘ 𝑎 )  ⊆  𝑎 ) | 
						
							| 23 | 1 3 4 5 | aomclem1 | ⊢ ( 𝜑  →  𝐵  Or  ( 𝑅1 ‘ dom  𝑧 ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  𝐵  Or  ( 𝑅1 ‘ dom  𝑧 ) ) | 
						
							| 25 |  | inss2 | ⊢ ( 𝒫  𝑎  ∩  Fin )  ⊆  Fin | 
						
							| 26 | 25 18 | sselid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑦 ‘ 𝑎 )  ∈  Fin ) | 
						
							| 27 |  | eldifsni | ⊢ ( ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } )  →  ( 𝑦 ‘ 𝑎 )  ≠  ∅ ) | 
						
							| 28 | 17 27 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑦 ‘ 𝑎 )  ≠  ∅ ) | 
						
							| 29 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  →  𝑎  ⊆  ( 𝑅1 ‘ dom  𝑧 ) ) | 
						
							| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  𝑎  ⊆  ( 𝑅1 ‘ dom  𝑧 ) ) | 
						
							| 31 | 22 30 | sstrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑦 ‘ 𝑎 )  ⊆  ( 𝑅1 ‘ dom  𝑧 ) ) | 
						
							| 32 |  | fisupcl | ⊢ ( ( 𝐵  Or  ( 𝑅1 ‘ dom  𝑧 )  ∧  ( ( 𝑦 ‘ 𝑎 )  ∈  Fin  ∧  ( 𝑦 ‘ 𝑎 )  ≠  ∅  ∧  ( 𝑦 ‘ 𝑎 )  ⊆  ( 𝑅1 ‘ dom  𝑧 ) ) )  →  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 )  ∈  ( 𝑦 ‘ 𝑎 ) ) | 
						
							| 33 | 24 26 28 31 32 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 )  ∈  ( 𝑦 ‘ 𝑎 ) ) | 
						
							| 34 | 22 33 | sseldd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 )  ∈  𝑎 ) | 
						
							| 35 | 2 | fvmpt2 | ⊢ ( ( 𝑎  ∈  V  ∧  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 )  ∈  𝑎 )  →  ( 𝐶 ‘ 𝑎 )  =  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 ) ) | 
						
							| 36 | 9 34 35 | sylancr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝐶 ‘ 𝑎 )  =  sup ( ( 𝑦 ‘ 𝑎 ) ,  ( 𝑅1 ‘ dom  𝑧 ) ,  𝐵 ) ) | 
						
							| 37 | 36 34 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  ∧  𝑎  ≠  ∅ )  →  ( 𝐶 ‘ 𝑎 )  ∈  𝑎 ) | 
						
							| 38 | 37 | 3exp | ⊢ ( 𝜑  →  ( 𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 )  →  ( 𝑎  ≠  ∅  →  ( 𝐶 ‘ 𝑎 )  ∈  𝑎 ) ) ) | 
						
							| 39 | 38 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝒫  ( 𝑅1 ‘ dom  𝑧 ) ( 𝑎  ≠  ∅  →  ( 𝐶 ‘ 𝑎 )  ∈  𝑎 ) ) |