Step |
Hyp |
Ref |
Expression |
1 |
|
aomclem3.b |
⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } |
2 |
|
aomclem3.c |
⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) |
3 |
|
aomclem3.d |
⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) |
4 |
|
aomclem3.e |
⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } |
5 |
|
aomclem3.on |
⊢ ( 𝜑 → dom 𝑧 ∈ On ) |
6 |
|
aomclem3.su |
⊢ ( 𝜑 → dom 𝑧 = suc ∪ dom 𝑧 ) |
7 |
|
aomclem3.we |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
8 |
|
aomclem3.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
9 |
|
aomclem3.za |
⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) |
10 |
|
aomclem3.y |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
11 |
|
rneq |
⊢ ( 𝑎 = 𝑐 → ran 𝑎 = ran 𝑐 ) |
12 |
11
|
difeq2d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) = ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑎 = 𝑐 → ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) = ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) = ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) |
15 |
|
recseq |
⊢ ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) = ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) → recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) ) ) |
16 |
14 15
|
ax-mp |
⊢ recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) ) |
17 |
3 16
|
eqtri |
⊢ 𝐷 = recs ( ( 𝑐 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑐 ) ) ) ) |
18 |
|
fvexd |
⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) ∈ V ) |
19 |
1 2 5 6 7 8 9 10
|
aomclem2 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ) |
20 |
|
neeq1 |
⊢ ( 𝑎 = 𝑑 → ( 𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅ ) ) |
21 |
|
fveq2 |
⊢ ( 𝑎 = 𝑑 → ( 𝐶 ‘ 𝑎 ) = ( 𝐶 ‘ 𝑑 ) ) |
22 |
|
id |
⊢ ( 𝑎 = 𝑑 → 𝑎 = 𝑑 ) |
23 |
21 22
|
eleq12d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ↔ ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) |
24 |
20 23
|
imbi12d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ↔ ( 𝑑 ≠ ∅ → ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) ) |
25 |
24
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑎 ≠ ∅ → ( 𝐶 ‘ 𝑎 ) ∈ 𝑎 ) ↔ ∀ 𝑑 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑑 ≠ ∅ → ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) |
26 |
19 25
|
sylib |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝒫 ( 𝑅1 ‘ dom 𝑧 ) ( 𝑑 ≠ ∅ → ( 𝐶 ‘ 𝑑 ) ∈ 𝑑 ) ) |
27 |
17 18 26 4
|
dnwech |
⊢ ( 𝜑 → 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) |