Step |
Hyp |
Ref |
Expression |
1 |
|
aomclem4.f |
⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } |
2 |
|
aomclem4.on |
⊢ ( 𝜑 → dom 𝑧 ∈ On ) |
3 |
|
aomclem4.su |
⊢ ( 𝜑 → dom 𝑧 = ∪ dom 𝑧 ) |
4 |
|
aomclem4.we |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
5 |
|
suceq |
⊢ ( 𝑐 = ( rank ‘ 𝑎 ) → suc 𝑐 = suc ( rank ‘ 𝑎 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑐 = ( rank ‘ 𝑎 ) → ( 𝑧 ‘ suc 𝑐 ) = ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) ) |
7 |
|
r1fnon |
⊢ 𝑅1 Fn On |
8 |
|
fnfun |
⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) |
9 |
7 8
|
ax-mp |
⊢ Fun 𝑅1 |
10 |
7
|
fndmi |
⊢ dom 𝑅1 = On |
11 |
10
|
eqimss2i |
⊢ On ⊆ dom 𝑅1 |
12 |
9 11
|
pm3.2i |
⊢ ( Fun 𝑅1 ∧ On ⊆ dom 𝑅1 ) |
13 |
|
funfvima2 |
⊢ ( ( Fun 𝑅1 ∧ On ⊆ dom 𝑅1 ) → ( dom 𝑧 ∈ On → ( 𝑅1 ‘ dom 𝑧 ) ∈ ( 𝑅1 “ On ) ) ) |
14 |
12 2 13
|
mpsyl |
⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) ∈ ( 𝑅1 “ On ) ) |
15 |
|
elssuni |
⊢ ( ( 𝑅1 ‘ dom 𝑧 ) ∈ ( 𝑅1 “ On ) → ( 𝑅1 ‘ dom 𝑧 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝑅1 ‘ dom 𝑧 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
17 |
16
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → 𝑏 ∈ ∪ ( 𝑅1 “ On ) ) |
18 |
|
rankidb |
⊢ ( 𝑏 ∈ ∪ ( 𝑅1 “ On ) → 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑏 ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑏 ) ) ) |
20 |
|
suceq |
⊢ ( ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) → suc ( rank ‘ 𝑏 ) = suc ( rank ‘ 𝑎 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑏 ) ) = ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) |
22 |
21
|
eleq2d |
⊢ ( ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) → ( 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑏 ) ) ↔ 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) ) |
23 |
19 22
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → ( ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) → 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) ) |
24 |
23
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∧ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) ) → 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) ) |
25 |
24
|
ss2abdv |
⊢ ( 𝜑 → { 𝑏 ∣ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∧ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) ) } ⊆ { 𝑏 ∣ 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) } ) |
26 |
|
df-rab |
⊢ { 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∣ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) } = { 𝑏 ∣ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∧ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) ) } |
27 |
|
abid1 |
⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) = { 𝑏 ∣ 𝑏 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) } |
28 |
25 26 27
|
3sstr4g |
⊢ ( 𝜑 → { 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∣ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) } ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → { 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∣ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) } ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑏 = suc ( rank ‘ 𝑎 ) → ( 𝑧 ‘ 𝑏 ) = ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑏 = suc ( rank ‘ 𝑎 ) → ( 𝑅1 ‘ 𝑏 ) = ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) |
32 |
30 31
|
weeq12d |
⊢ ( 𝑏 = suc ( rank ‘ 𝑎 ) → ( ( 𝑧 ‘ 𝑏 ) We ( 𝑅1 ‘ 𝑏 ) ↔ ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) We ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑧 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑏 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝑏 ) ) |
35 |
33 34
|
weeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ↔ ( 𝑧 ‘ 𝑏 ) We ( 𝑅1 ‘ 𝑏 ) ) ) |
36 |
35
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ↔ ∀ 𝑏 ∈ dom 𝑧 ( 𝑧 ‘ 𝑏 ) We ( 𝑅1 ‘ 𝑏 ) ) |
37 |
4 36
|
sylib |
⊢ ( 𝜑 → ∀ 𝑏 ∈ dom 𝑧 ( 𝑧 ‘ 𝑏 ) We ( 𝑅1 ‘ 𝑏 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → ∀ 𝑏 ∈ dom 𝑧 ( 𝑧 ‘ 𝑏 ) We ( 𝑅1 ‘ 𝑏 ) ) |
39 |
|
rankr1ai |
⊢ ( 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) → ( rank ‘ 𝑎 ) ∈ dom 𝑧 ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → ( rank ‘ 𝑎 ) ∈ dom 𝑧 ) |
41 |
|
eloni |
⊢ ( dom 𝑧 ∈ On → Ord dom 𝑧 ) |
42 |
2 41
|
syl |
⊢ ( 𝜑 → Ord dom 𝑧 ) |
43 |
|
limsuc2 |
⊢ ( ( Ord dom 𝑧 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ( ( rank ‘ 𝑎 ) ∈ dom 𝑧 ↔ suc ( rank ‘ 𝑎 ) ∈ dom 𝑧 ) ) |
44 |
42 3 43
|
syl2anc |
⊢ ( 𝜑 → ( ( rank ‘ 𝑎 ) ∈ dom 𝑧 ↔ suc ( rank ‘ 𝑎 ) ∈ dom 𝑧 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → ( ( rank ‘ 𝑎 ) ∈ dom 𝑧 ↔ suc ( rank ‘ 𝑎 ) ∈ dom 𝑧 ) ) |
46 |
40 45
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → suc ( rank ‘ 𝑎 ) ∈ dom 𝑧 ) |
47 |
32 38 46
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) We ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) ) |
48 |
|
wess |
⊢ ( { 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∣ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) } ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) → ( ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) We ( 𝑅1 ‘ suc ( rank ‘ 𝑎 ) ) → ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) We { 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∣ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) } ) ) |
49 |
29 47 48
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑅1 ‘ dom 𝑧 ) ) → ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) We { 𝑏 ∈ ( 𝑅1 ‘ dom 𝑧 ) ∣ ( rank ‘ 𝑏 ) = ( rank ‘ 𝑎 ) } ) |
50 |
|
rankf |
⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On |
51 |
50
|
a1i |
⊢ ( 𝜑 → rank : ∪ ( 𝑅1 “ On ) ⟶ On ) |
52 |
51 16
|
fssresd |
⊢ ( 𝜑 → ( rank ↾ ( 𝑅1 ‘ dom 𝑧 ) ) : ( 𝑅1 ‘ dom 𝑧 ) ⟶ On ) |
53 |
|
epweon |
⊢ E We On |
54 |
53
|
a1i |
⊢ ( 𝜑 → E We On ) |
55 |
6 1 49 52 54
|
fnwe2 |
⊢ ( 𝜑 → 𝐹 We ( 𝑅1 ‘ dom 𝑧 ) ) |