Step |
Hyp |
Ref |
Expression |
1 |
|
aomclem6.b |
⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } |
2 |
|
aomclem6.c |
⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) |
3 |
|
aomclem6.d |
⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) |
4 |
|
aomclem6.e |
⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } |
5 |
|
aomclem6.f |
⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } |
6 |
|
aomclem6.g |
⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) |
7 |
|
aomclem6.h |
⊢ 𝐻 = recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) |
8 |
|
aomclem6.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
9 |
|
aomclem6.y |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
aomclem6 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) |
11 |
|
fvex |
⊢ ( 𝐻 ‘ 𝐴 ) ∈ V |
12 |
|
weeq1 |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝐴 ) → ( 𝑏 We ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) ) |
13 |
11 12
|
spcev |
⊢ ( ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |