Step |
Hyp |
Ref |
Expression |
1 |
|
aomclem8.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
aomclem8.y |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
3 |
|
elequ2 |
⊢ ( ℎ = 𝑏 → ( 𝑖 ∈ ℎ ↔ 𝑖 ∈ 𝑏 ) ) |
4 |
|
elequ2 |
⊢ ( 𝑔 = 𝑐 → ( 𝑖 ∈ 𝑔 ↔ 𝑖 ∈ 𝑐 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑔 = 𝑐 → ( ¬ 𝑖 ∈ 𝑔 ↔ ¬ 𝑖 ∈ 𝑐 ) ) |
6 |
3 5
|
bi2anan9r |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ↔ ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ) ) |
7 |
|
elequ2 |
⊢ ( 𝑔 = 𝑐 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ 𝑐 ) ) |
8 |
|
elequ2 |
⊢ ( ℎ = 𝑏 → ( 𝑗 ∈ ℎ ↔ 𝑗 ∈ 𝑏 ) ) |
9 |
7 8
|
bi2bian9 |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ↔ ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
11 |
10
|
ralbidv |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
12 |
6 11
|
anbi12d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) ) |
13 |
12
|
rexbidv |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) ) |
14 |
|
elequ1 |
⊢ ( 𝑖 = 𝑑 → ( 𝑖 ∈ 𝑏 ↔ 𝑑 ∈ 𝑏 ) ) |
15 |
|
elequ1 |
⊢ ( 𝑖 = 𝑑 → ( 𝑖 ∈ 𝑐 ↔ 𝑑 ∈ 𝑐 ) ) |
16 |
15
|
notbid |
⊢ ( 𝑖 = 𝑑 → ( ¬ 𝑖 ∈ 𝑐 ↔ ¬ 𝑑 ∈ 𝑐 ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑖 = 𝑑 → ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ↔ ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ) ) |
18 |
|
breq2 |
⊢ ( 𝑖 = 𝑑 → ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 ↔ 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 ) ) |
19 |
18
|
imbi1d |
⊢ ( 𝑖 = 𝑑 → ( ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑖 = 𝑑 → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ) |
21 |
|
breq1 |
⊢ ( 𝑗 = 𝑓 → ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 ↔ 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 ) ) |
22 |
|
elequ1 |
⊢ ( 𝑗 = 𝑓 → ( 𝑗 ∈ 𝑐 ↔ 𝑓 ∈ 𝑐 ) ) |
23 |
|
elequ1 |
⊢ ( 𝑗 = 𝑓 → ( 𝑗 ∈ 𝑏 ↔ 𝑓 ∈ 𝑏 ) ) |
24 |
22 23
|
bibi12d |
⊢ ( 𝑗 = 𝑓 → ( ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ↔ ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) |
25 |
21 24
|
imbi12d |
⊢ ( 𝑗 = 𝑓 → ( ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) |
26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) |
27 |
20 26
|
bitrdi |
⊢ ( 𝑖 = 𝑑 → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ↔ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) |
28 |
17 27
|
anbi12d |
⊢ ( 𝑖 = 𝑑 → ( ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ↔ ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) ) |
29 |
28
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) |
30 |
13 29
|
bitrdi |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ∃ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) ) ) |
31 |
30
|
cbvopabv |
⊢ { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } = { 〈 𝑐 , 𝑏 〉 ∣ ∃ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐 ) ∧ ∀ 𝑓 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑑 → ( 𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏 ) ) ) } |
32 |
|
nfcv |
⊢ Ⅎ 𝑐 sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑔 ( 𝑦 ‘ 𝑐 ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑔 ( 𝑅1 ‘ dom 𝑒 ) |
35 |
|
nfopab1 |
⊢ Ⅎ 𝑔 { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } |
36 |
33 34 35
|
nfsup |
⊢ Ⅎ 𝑔 sup ( ( 𝑦 ‘ 𝑐 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
37 |
|
fveq2 |
⊢ ( 𝑔 = 𝑐 → ( 𝑦 ‘ 𝑔 ) = ( 𝑦 ‘ 𝑐 ) ) |
38 |
37
|
supeq1d |
⊢ ( 𝑔 = 𝑐 → sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) = sup ( ( 𝑦 ‘ 𝑐 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
39 |
32 36 38
|
cbvmpt |
⊢ ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) = ( 𝑐 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑐 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑐 ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) |
41 |
|
nffvmpt1 |
⊢ Ⅎ 𝑔 ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) |
42 |
|
rneq |
⊢ ( 𝑔 = 𝑐 → ran 𝑔 = ran 𝑐 ) |
43 |
42
|
difeq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) = ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) = ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) |
45 |
40 41 44
|
cbvmpt |
⊢ ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) = ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) |
46 |
|
recseq |
⊢ ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) = ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) → recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) ) ) |
47 |
45 46
|
ax-mp |
⊢ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑐 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑐 ) ) ) ) |
48 |
|
nfv |
⊢ Ⅎ 𝑐 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) |
49 |
|
nfv |
⊢ Ⅎ 𝑏 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) |
50 |
|
nfmpt1 |
⊢ Ⅎ 𝑔 ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) |
51 |
50
|
nfrecs |
⊢ Ⅎ 𝑔 recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
52 |
51
|
nfcnv |
⊢ Ⅎ 𝑔 ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑔 { 𝑐 } |
54 |
52 53
|
nfima |
⊢ Ⅎ 𝑔 ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
55 |
54
|
nfint |
⊢ Ⅎ 𝑔 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
56 |
|
nfcv |
⊢ Ⅎ 𝑔 { 𝑏 } |
57 |
52 56
|
nfima |
⊢ Ⅎ 𝑔 ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
58 |
57
|
nfint |
⊢ Ⅎ 𝑔 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
59 |
55 58
|
nfel |
⊢ Ⅎ 𝑔 ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
60 |
|
nfcv |
⊢ Ⅎ ℎ V |
61 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑦 ‘ 𝑔 ) |
62 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑅1 ‘ dom 𝑒 ) |
63 |
|
nfopab2 |
⊢ Ⅎ ℎ { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } |
64 |
61 62 63
|
nfsup |
⊢ Ⅎ ℎ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
65 |
60 64
|
nfmpt |
⊢ Ⅎ ℎ ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
66 |
|
nfcv |
⊢ Ⅎ ℎ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) |
67 |
65 66
|
nffv |
⊢ Ⅎ ℎ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) |
68 |
60 67
|
nfmpt |
⊢ Ⅎ ℎ ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) |
69 |
68
|
nfrecs |
⊢ Ⅎ ℎ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
70 |
69
|
nfcnv |
⊢ Ⅎ ℎ ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
71 |
|
nfcv |
⊢ Ⅎ ℎ { 𝑐 } |
72 |
70 71
|
nfima |
⊢ Ⅎ ℎ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
73 |
72
|
nfint |
⊢ Ⅎ ℎ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) |
74 |
|
nfcv |
⊢ Ⅎ ℎ { 𝑏 } |
75 |
70 74
|
nfima |
⊢ Ⅎ ℎ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
76 |
75
|
nfint |
⊢ Ⅎ ℎ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
77 |
73 76
|
nfel |
⊢ Ⅎ ℎ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) |
78 |
|
sneq |
⊢ ( 𝑔 = 𝑐 → { 𝑔 } = { 𝑐 } ) |
79 |
78
|
imaeq2d |
⊢ ( 𝑔 = 𝑐 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ) |
80 |
79
|
inteqd |
⊢ ( 𝑔 = 𝑐 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ) |
81 |
|
sneq |
⊢ ( ℎ = 𝑏 → { ℎ } = { 𝑏 } ) |
82 |
81
|
imaeq2d |
⊢ ( ℎ = 𝑏 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) |
83 |
82
|
inteqd |
⊢ ( ℎ = 𝑏 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) |
84 |
|
eleq12 |
⊢ ( ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∧ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) → ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ↔ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) ) |
85 |
80 83 84
|
syl2an |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ↔ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) ) ) |
86 |
48 49 59 77 85
|
cbvopab |
⊢ { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } = { 〈 𝑐 , 𝑏 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑐 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑏 } ) } |
87 |
|
fveq2 |
⊢ ( 𝑔 = 𝑐 → ( rank ‘ 𝑔 ) = ( rank ‘ 𝑐 ) ) |
88 |
|
fveq2 |
⊢ ( ℎ = 𝑏 → ( rank ‘ ℎ ) = ( rank ‘ 𝑏 ) ) |
89 |
87 88
|
breqan12d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ↔ ( rank ‘ 𝑐 ) E ( rank ‘ 𝑏 ) ) ) |
90 |
87 88
|
eqeqan12d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ↔ ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ) ) |
91 |
|
simpl |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → 𝑔 = 𝑐 ) |
92 |
|
suceq |
⊢ ( ( rank ‘ 𝑔 ) = ( rank ‘ 𝑐 ) → suc ( rank ‘ 𝑔 ) = suc ( rank ‘ 𝑐 ) ) |
93 |
87 92
|
syl |
⊢ ( 𝑔 = 𝑐 → suc ( rank ‘ 𝑔 ) = suc ( rank ‘ 𝑐 ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → suc ( rank ‘ 𝑔 ) = suc ( rank ‘ 𝑐 ) ) |
95 |
94
|
fveq2d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) = ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) ) |
96 |
|
simpr |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ℎ = 𝑏 ) |
97 |
91 95 96
|
breq123d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ↔ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) |
98 |
90 97
|
anbi12d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ↔ ( ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ∧ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) ) |
99 |
89 98
|
orbi12d |
⊢ ( ( 𝑔 = 𝑐 ∧ ℎ = 𝑏 ) → ( ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ↔ ( ( rank ‘ 𝑐 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ∧ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) ) ) |
100 |
99
|
cbvopabv |
⊢ { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } = { 〈 𝑐 , 𝑏 〉 ∣ ( ( rank ‘ 𝑐 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑐 ) = ( rank ‘ 𝑏 ) ∧ 𝑐 ( 𝑒 ‘ suc ( rank ‘ 𝑐 ) ) 𝑏 ) ) } |
101 |
|
eqid |
⊢ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) = ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) |
102 |
|
dmeq |
⊢ ( 𝑙 = 𝑒 → dom 𝑙 = dom 𝑒 ) |
103 |
102
|
unieqd |
⊢ ( 𝑙 = 𝑒 → ∪ dom 𝑙 = ∪ dom 𝑒 ) |
104 |
102 103
|
eqeq12d |
⊢ ( 𝑙 = 𝑒 → ( dom 𝑙 = ∪ dom 𝑙 ↔ dom 𝑒 = ∪ dom 𝑒 ) ) |
105 |
|
fveq1 |
⊢ ( 𝑙 = 𝑒 → ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) = ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ) |
106 |
105
|
breqd |
⊢ ( 𝑙 = 𝑒 → ( 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ↔ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) |
107 |
106
|
anbi2d |
⊢ ( 𝑙 = 𝑒 → ( ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ↔ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ) |
108 |
107
|
orbi2d |
⊢ ( 𝑙 = 𝑒 → ( ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ↔ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) ) ) |
109 |
108
|
opabbidv |
⊢ ( 𝑙 = 𝑒 → { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } = { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } ) |
110 |
|
eqidd |
⊢ ( 𝑙 = 𝑒 → ( 𝑦 ‘ 𝑔 ) = ( 𝑦 ‘ 𝑔 ) ) |
111 |
102
|
fveq2d |
⊢ ( 𝑙 = 𝑒 → ( 𝑅1 ‘ dom 𝑙 ) = ( 𝑅1 ‘ dom 𝑒 ) ) |
112 |
103
|
fveq2d |
⊢ ( 𝑙 = 𝑒 → ( 𝑅1 ‘ ∪ dom 𝑙 ) = ( 𝑅1 ‘ ∪ dom 𝑒 ) ) |
113 |
|
id |
⊢ ( 𝑙 = 𝑒 → 𝑙 = 𝑒 ) |
114 |
113 103
|
fveq12d |
⊢ ( 𝑙 = 𝑒 → ( 𝑙 ‘ ∪ dom 𝑙 ) = ( 𝑒 ‘ ∪ dom 𝑒 ) ) |
115 |
114
|
breqd |
⊢ ( 𝑙 = 𝑒 → ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 ↔ 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 ) ) |
116 |
115
|
imbi1d |
⊢ ( 𝑙 = 𝑒 → ( ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) |
117 |
112 116
|
raleqbidv |
⊢ ( 𝑙 = 𝑒 → ( ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ↔ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) |
118 |
117
|
anbi2d |
⊢ ( 𝑙 = 𝑒 → ( ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) ) |
119 |
112 118
|
rexeqbidv |
⊢ ( 𝑙 = 𝑒 → ( ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ↔ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) ) ) |
120 |
119
|
opabbidv |
⊢ ( 𝑙 = 𝑒 → { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } = { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) |
121 |
110 111 120
|
supeq123d |
⊢ ( 𝑙 = 𝑒 → sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) = sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) |
122 |
121
|
mpteq2dv |
⊢ ( 𝑙 = 𝑒 → ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) = ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ) |
123 |
111
|
difeq1d |
⊢ ( 𝑙 = 𝑒 → ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) = ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) |
124 |
122 123
|
fveq12d |
⊢ ( 𝑙 = 𝑒 → ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) = ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) |
125 |
124
|
mpteq2dv |
⊢ ( 𝑙 = 𝑒 → ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) = ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) |
126 |
|
recseq |
⊢ ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) = ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) → recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) ) |
127 |
125 126
|
syl |
⊢ ( 𝑙 = 𝑒 → recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) = recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) ) |
128 |
127
|
cnveqd |
⊢ ( 𝑙 = 𝑒 → ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) = ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) ) |
129 |
128
|
imaeq1d |
⊢ ( 𝑙 = 𝑒 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ) |
130 |
129
|
inteqd |
⊢ ( 𝑙 = 𝑒 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ) |
131 |
128
|
imaeq1d |
⊢ ( 𝑙 = 𝑒 → ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ) |
132 |
131
|
inteqd |
⊢ ( 𝑙 = 𝑒 → ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) = ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ) |
133 |
130 132
|
eleq12d |
⊢ ( 𝑙 = 𝑒 → ( ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ↔ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) ) ) |
134 |
133
|
opabbidv |
⊢ ( 𝑙 = 𝑒 → { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } = { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) |
135 |
104 109 134
|
ifbieq12d |
⊢ ( 𝑙 = 𝑒 → if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) = if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ) |
136 |
111
|
sqxpeqd |
⊢ ( 𝑙 = 𝑒 → ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) = ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) |
137 |
135 136
|
ineq12d |
⊢ ( 𝑙 = 𝑒 → ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) = ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) |
138 |
137
|
cbvmptv |
⊢ ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) = ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) |
139 |
|
recseq |
⊢ ( ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) = ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) → recs ( ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) ) = recs ( ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) ) ) |
140 |
138 139
|
ax-mp |
⊢ recs ( ( 𝑙 ∈ V ↦ ( if ( dom 𝑙 = ∪ dom 𝑙 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑙 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑙 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪ dom 𝑙 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑙 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑙 ) × ( 𝑅1 ‘ dom 𝑙 ) ) ) ) ) = recs ( ( 𝑒 ∈ V ↦ ( if ( dom 𝑒 = ∪ dom 𝑒 , { 〈 𝑔 , ℎ 〉 ∣ ( ( rank ‘ 𝑔 ) E ( rank ‘ ℎ ) ∨ ( ( rank ‘ 𝑔 ) = ( rank ‘ ℎ ) ∧ 𝑔 ( 𝑒 ‘ suc ( rank ‘ 𝑔 ) ) ℎ ) ) } , { 〈 𝑔 , ℎ 〉 ∣ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { 𝑔 } ) ∈ ∩ ( ◡ recs ( ( 𝑔 ∈ V ↦ ( ( 𝑔 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑔 ) , ( 𝑅1 ‘ dom 𝑒 ) , { 〈 𝑔 , ℎ 〉 ∣ ∃ 𝑖 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( ( 𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔 ) ∧ ∀ 𝑗 ∈ ( 𝑅1 ‘ ∪ dom 𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪ dom 𝑒 ) 𝑖 → ( 𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom 𝑒 ) ∖ ran 𝑔 ) ) ) ) “ { ℎ } ) } ) ∩ ( ( 𝑅1 ‘ dom 𝑒 ) × ( 𝑅1 ‘ dom 𝑒 ) ) ) ) ) |
141 |
|
neeq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅ ) ) |
142 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝑦 ‘ 𝑎 ) = ( 𝑦 ‘ 𝑐 ) ) |
143 |
|
pweq |
⊢ ( 𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐 ) |
144 |
143
|
ineq1d |
⊢ ( 𝑎 = 𝑐 → ( 𝒫 𝑎 ∩ Fin ) = ( 𝒫 𝑐 ∩ Fin ) ) |
145 |
144
|
difeq1d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) = ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) |
146 |
142 145
|
eleq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) |
147 |
141 146
|
imbi12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ↔ ( 𝑐 ≠ ∅ → ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) ) |
148 |
147
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ↔ ∀ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑐 ≠ ∅ → ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) |
149 |
2 148
|
sylib |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑐 ≠ ∅ → ( 𝑦 ‘ 𝑐 ) ∈ ( ( 𝒫 𝑐 ∩ Fin ) ∖ { ∅ } ) ) ) |
150 |
31 39 47 86 100 101 140 1 149
|
aomclem7 |
⊢ ( 𝜑 → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |