| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aomclem8.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 2 |  | aomclem8.y | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) ) ) | 
						
							| 3 |  | elequ2 | ⊢ ( ℎ  =  𝑏  →  ( 𝑖  ∈  ℎ  ↔  𝑖  ∈  𝑏 ) ) | 
						
							| 4 |  | elequ2 | ⊢ ( 𝑔  =  𝑐  →  ( 𝑖  ∈  𝑔  ↔  𝑖  ∈  𝑐 ) ) | 
						
							| 5 | 4 | notbid | ⊢ ( 𝑔  =  𝑐  →  ( ¬  𝑖  ∈  𝑔  ↔  ¬  𝑖  ∈  𝑐 ) ) | 
						
							| 6 | 3 5 | bi2anan9r | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ↔  ( 𝑖  ∈  𝑏  ∧  ¬  𝑖  ∈  𝑐 ) ) ) | 
						
							| 7 |  | elequ2 | ⊢ ( 𝑔  =  𝑐  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  𝑐 ) ) | 
						
							| 8 |  | elequ2 | ⊢ ( ℎ  =  𝑏  →  ( 𝑗  ∈  ℎ  ↔  𝑗  ∈  𝑏 ) ) | 
						
							| 9 | 7 8 | bi2bian9 | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ )  ↔  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) )  ↔  ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) )  ↔  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) ) | 
						
							| 12 | 6 11 | anbi12d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) )  ↔  ( ( 𝑖  ∈  𝑏  ∧  ¬  𝑖  ∈  𝑐 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) )  ↔  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  𝑏  ∧  ¬  𝑖  ∈  𝑐 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) ) ) | 
						
							| 14 |  | elequ1 | ⊢ ( 𝑖  =  𝑑  →  ( 𝑖  ∈  𝑏  ↔  𝑑  ∈  𝑏 ) ) | 
						
							| 15 |  | elequ1 | ⊢ ( 𝑖  =  𝑑  →  ( 𝑖  ∈  𝑐  ↔  𝑑  ∈  𝑐 ) ) | 
						
							| 16 | 15 | notbid | ⊢ ( 𝑖  =  𝑑  →  ( ¬  𝑖  ∈  𝑐  ↔  ¬  𝑑  ∈  𝑐 ) ) | 
						
							| 17 | 14 16 | anbi12d | ⊢ ( 𝑖  =  𝑑  →  ( ( 𝑖  ∈  𝑏  ∧  ¬  𝑖  ∈  𝑐 )  ↔  ( 𝑑  ∈  𝑏  ∧  ¬  𝑑  ∈  𝑐 ) ) ) | 
						
							| 18 |  | breq2 | ⊢ ( 𝑖  =  𝑑  →  ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  ↔  𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑 ) ) | 
						
							| 19 | 18 | imbi1d | ⊢ ( 𝑖  =  𝑑  →  ( ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) )  ↔  ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑖  =  𝑑  →  ( ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) )  ↔  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) ) ) | 
						
							| 21 |  | breq1 | ⊢ ( 𝑗  =  𝑓  →  ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  ↔  𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑 ) ) | 
						
							| 22 |  | elequ1 | ⊢ ( 𝑗  =  𝑓  →  ( 𝑗  ∈  𝑐  ↔  𝑓  ∈  𝑐 ) ) | 
						
							| 23 |  | elequ1 | ⊢ ( 𝑗  =  𝑓  →  ( 𝑗  ∈  𝑏  ↔  𝑓  ∈  𝑏 ) ) | 
						
							| 24 | 22 23 | bibi12d | ⊢ ( 𝑗  =  𝑓  →  ( ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 )  ↔  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) | 
						
							| 25 | 21 24 | imbi12d | ⊢ ( 𝑗  =  𝑓  →  ( ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) )  ↔  ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) ) | 
						
							| 26 | 25 | cbvralvw | ⊢ ( ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) )  ↔  ∀ 𝑓  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) | 
						
							| 27 | 20 26 | bitrdi | ⊢ ( 𝑖  =  𝑑  →  ( ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) )  ↔  ∀ 𝑓  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) ) | 
						
							| 28 | 17 27 | anbi12d | ⊢ ( 𝑖  =  𝑑  →  ( ( ( 𝑖  ∈  𝑏  ∧  ¬  𝑖  ∈  𝑐 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) )  ↔  ( ( 𝑑  ∈  𝑏  ∧  ¬  𝑑  ∈  𝑐 )  ∧  ∀ 𝑓  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) ) ) | 
						
							| 29 | 28 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  𝑏  ∧  ¬  𝑖  ∈  𝑐 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑐  ↔  𝑗  ∈  𝑏 ) ) )  ↔  ∃ 𝑑  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑑  ∈  𝑏  ∧  ¬  𝑑  ∈  𝑐 )  ∧  ∀ 𝑓  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) ) | 
						
							| 30 | 13 29 | bitrdi | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) )  ↔  ∃ 𝑑  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑑  ∈  𝑏  ∧  ¬  𝑑  ∈  𝑐 )  ∧  ∀ 𝑓  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) ) ) | 
						
							| 31 | 30 | cbvopabv | ⊢ { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) }  =  { 〈 𝑐 ,  𝑏 〉  ∣  ∃ 𝑑  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑑  ∈  𝑏  ∧  ¬  𝑑  ∈  𝑐 )  ∧  ∀ 𝑓  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑓 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑑  →  ( 𝑓  ∈  𝑐  ↔  𝑓  ∈  𝑏 ) ) ) } | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑐 sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑔 ( 𝑦 ‘ 𝑐 ) | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑔 ( 𝑅1 ‘ dom  𝑒 ) | 
						
							| 35 |  | nfopab1 | ⊢ Ⅎ 𝑔 { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } | 
						
							| 36 | 33 34 35 | nfsup | ⊢ Ⅎ 𝑔 sup ( ( 𝑦 ‘ 𝑐 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑔  =  𝑐  →  ( 𝑦 ‘ 𝑔 )  =  ( 𝑦 ‘ 𝑐 ) ) | 
						
							| 38 | 37 | supeq1d | ⊢ ( 𝑔  =  𝑐  →  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } )  =  sup ( ( 𝑦 ‘ 𝑐 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) | 
						
							| 39 | 32 36 38 | cbvmpt | ⊢ ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) )  =  ( 𝑐  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑐 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑐 ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) | 
						
							| 41 |  | nffvmpt1 | ⊢ Ⅎ 𝑔 ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) | 
						
							| 42 |  | rneq | ⊢ ( 𝑔  =  𝑐  →  ran  𝑔  =  ran  𝑐 ) | 
						
							| 43 | 42 | difeq2d | ⊢ ( 𝑔  =  𝑐  →  ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 )  =  ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( 𝑔  =  𝑐  →  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) )  =  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) ) | 
						
							| 45 | 40 41 44 | cbvmpt | ⊢ ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) )  =  ( 𝑐  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) ) | 
						
							| 46 |  | recseq | ⊢ ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) )  =  ( 𝑐  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) )  →  recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  =  recs ( ( 𝑐  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) ) ) ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  =  recs ( ( 𝑐  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑐 ) ) ) ) | 
						
							| 48 |  | nfv | ⊢ Ⅎ 𝑐 ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) | 
						
							| 49 |  | nfv | ⊢ Ⅎ 𝑏 ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) | 
						
							| 50 |  | nfmpt1 | ⊢ Ⅎ 𝑔 ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) | 
						
							| 51 | 50 | nfrecs | ⊢ Ⅎ 𝑔 recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) | 
						
							| 52 | 51 | nfcnv | ⊢ Ⅎ 𝑔 ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) | 
						
							| 53 |  | nfcv | ⊢ Ⅎ 𝑔 { 𝑐 } | 
						
							| 54 | 52 53 | nfima | ⊢ Ⅎ 𝑔 ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } ) | 
						
							| 55 | 54 | nfint | ⊢ Ⅎ 𝑔 ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } ) | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑔 { 𝑏 } | 
						
							| 57 | 52 56 | nfima | ⊢ Ⅎ 𝑔 ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) | 
						
							| 58 | 57 | nfint | ⊢ Ⅎ 𝑔 ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) | 
						
							| 59 | 55 58 | nfel | ⊢ Ⅎ 𝑔 ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ ℎ V | 
						
							| 61 |  | nfcv | ⊢ Ⅎ ℎ ( 𝑦 ‘ 𝑔 ) | 
						
							| 62 |  | nfcv | ⊢ Ⅎ ℎ ( 𝑅1 ‘ dom  𝑒 ) | 
						
							| 63 |  | nfopab2 | ⊢ Ⅎ ℎ { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } | 
						
							| 64 | 61 62 63 | nfsup | ⊢ Ⅎ ℎ sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) | 
						
							| 65 | 60 64 | nfmpt | ⊢ Ⅎ ℎ ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) | 
						
							| 66 |  | nfcv | ⊢ Ⅎ ℎ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) | 
						
							| 67 | 65 66 | nffv | ⊢ Ⅎ ℎ ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) | 
						
							| 68 | 60 67 | nfmpt | ⊢ Ⅎ ℎ ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) | 
						
							| 69 | 68 | nfrecs | ⊢ Ⅎ ℎ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) | 
						
							| 70 | 69 | nfcnv | ⊢ Ⅎ ℎ ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) | 
						
							| 71 |  | nfcv | ⊢ Ⅎ ℎ { 𝑐 } | 
						
							| 72 | 70 71 | nfima | ⊢ Ⅎ ℎ ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } ) | 
						
							| 73 | 72 | nfint | ⊢ Ⅎ ℎ ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } ) | 
						
							| 74 |  | nfcv | ⊢ Ⅎ ℎ { 𝑏 } | 
						
							| 75 | 70 74 | nfima | ⊢ Ⅎ ℎ ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) | 
						
							| 76 | 75 | nfint | ⊢ Ⅎ ℎ ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) | 
						
							| 77 | 73 76 | nfel | ⊢ Ⅎ ℎ ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) | 
						
							| 78 |  | sneq | ⊢ ( 𝑔  =  𝑐  →  { 𝑔 }  =  { 𝑐 } ) | 
						
							| 79 | 78 | imaeq2d | ⊢ ( 𝑔  =  𝑐  →  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  =  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } ) ) | 
						
							| 80 | 79 | inteqd | ⊢ ( 𝑔  =  𝑐  →  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  =  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } ) ) | 
						
							| 81 |  | sneq | ⊢ ( ℎ  =  𝑏  →  { ℎ }  =  { 𝑏 } ) | 
						
							| 82 | 81 | imaeq2d | ⊢ ( ℎ  =  𝑏  →  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  =  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) ) | 
						
							| 83 | 82 | inteqd | ⊢ ( ℎ  =  𝑏  →  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  =  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) ) | 
						
							| 84 |  | eleq12 | ⊢ ( ( ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  =  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } )  ∧  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  =  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) )  →  ( ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  ↔  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) ) ) | 
						
							| 85 | 80 83 84 | syl2an | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  ↔  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) ) ) | 
						
							| 86 | 48 49 59 77 85 | cbvopab | ⊢ { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) }  =  { 〈 𝑐 ,  𝑏 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑐 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑏 } ) } | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑔  =  𝑐  →  ( rank ‘ 𝑔 )  =  ( rank ‘ 𝑐 ) ) | 
						
							| 88 |  | fveq2 | ⊢ ( ℎ  =  𝑏  →  ( rank ‘ ℎ )  =  ( rank ‘ 𝑏 ) ) | 
						
							| 89 | 87 88 | breqan12d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ↔  ( rank ‘ 𝑐 )  E  ( rank ‘ 𝑏 ) ) ) | 
						
							| 90 | 87 88 | eqeqan12d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ↔  ( rank ‘ 𝑐 )  =  ( rank ‘ 𝑏 ) ) ) | 
						
							| 91 |  | simpl | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  𝑔  =  𝑐 ) | 
						
							| 92 |  | suceq | ⊢ ( ( rank ‘ 𝑔 )  =  ( rank ‘ 𝑐 )  →  suc  ( rank ‘ 𝑔 )  =  suc  ( rank ‘ 𝑐 ) ) | 
						
							| 93 | 87 92 | syl | ⊢ ( 𝑔  =  𝑐  →  suc  ( rank ‘ 𝑔 )  =  suc  ( rank ‘ 𝑐 ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  suc  ( rank ‘ 𝑔 )  =  suc  ( rank ‘ 𝑐 ) ) | 
						
							| 95 | 94 | fveq2d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) )  =  ( 𝑒 ‘ suc  ( rank ‘ 𝑐 ) ) ) | 
						
							| 96 |  | simpr | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ℎ  =  𝑏 ) | 
						
							| 97 | 91 95 96 | breq123d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( 𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ  ↔  𝑐 ( 𝑒 ‘ suc  ( rank ‘ 𝑐 ) ) 𝑏 ) ) | 
						
							| 98 | 90 97 | anbi12d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ )  ↔  ( ( rank ‘ 𝑐 )  =  ( rank ‘ 𝑏 )  ∧  𝑐 ( 𝑒 ‘ suc  ( rank ‘ 𝑐 ) ) 𝑏 ) ) ) | 
						
							| 99 | 89 98 | orbi12d | ⊢ ( ( 𝑔  =  𝑐  ∧  ℎ  =  𝑏 )  →  ( ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) )  ↔  ( ( rank ‘ 𝑐 )  E  ( rank ‘ 𝑏 )  ∨  ( ( rank ‘ 𝑐 )  =  ( rank ‘ 𝑏 )  ∧  𝑐 ( 𝑒 ‘ suc  ( rank ‘ 𝑐 ) ) 𝑏 ) ) ) ) | 
						
							| 100 | 99 | cbvopabv | ⊢ { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) }  =  { 〈 𝑐 ,  𝑏 〉  ∣  ( ( rank ‘ 𝑐 )  E  ( rank ‘ 𝑏 )  ∨  ( ( rank ‘ 𝑐 )  =  ( rank ‘ 𝑏 )  ∧  𝑐 ( 𝑒 ‘ suc  ( rank ‘ 𝑐 ) ) 𝑏 ) ) } | 
						
							| 101 |  | eqid | ⊢ ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) )  =  ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) | 
						
							| 102 |  | dmeq | ⊢ ( 𝑙  =  𝑒  →  dom  𝑙  =  dom  𝑒 ) | 
						
							| 103 | 102 | unieqd | ⊢ ( 𝑙  =  𝑒  →  ∪  dom  𝑙  =  ∪  dom  𝑒 ) | 
						
							| 104 | 102 103 | eqeq12d | ⊢ ( 𝑙  =  𝑒  →  ( dom  𝑙  =  ∪  dom  𝑙  ↔  dom  𝑒  =  ∪  dom  𝑒 ) ) | 
						
							| 105 |  | fveq1 | ⊢ ( 𝑙  =  𝑒  →  ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) )  =  ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ) | 
						
							| 106 | 105 | breqd | ⊢ ( 𝑙  =  𝑒  →  ( 𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ  ↔  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) | 
						
							| 107 | 106 | anbi2d | ⊢ ( 𝑙  =  𝑒  →  ( ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ )  ↔  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) ) | 
						
							| 108 | 107 | orbi2d | ⊢ ( 𝑙  =  𝑒  →  ( ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) )  ↔  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) ) ) | 
						
							| 109 | 108 | opabbidv | ⊢ ( 𝑙  =  𝑒  →  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) }  =  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ) | 
						
							| 110 |  | eqidd | ⊢ ( 𝑙  =  𝑒  →  ( 𝑦 ‘ 𝑔 )  =  ( 𝑦 ‘ 𝑔 ) ) | 
						
							| 111 | 102 | fveq2d | ⊢ ( 𝑙  =  𝑒  →  ( 𝑅1 ‘ dom  𝑙 )  =  ( 𝑅1 ‘ dom  𝑒 ) ) | 
						
							| 112 | 103 | fveq2d | ⊢ ( 𝑙  =  𝑒  →  ( 𝑅1 ‘ ∪  dom  𝑙 )  =  ( 𝑅1 ‘ ∪  dom  𝑒 ) ) | 
						
							| 113 |  | id | ⊢ ( 𝑙  =  𝑒  →  𝑙  =  𝑒 ) | 
						
							| 114 | 113 103 | fveq12d | ⊢ ( 𝑙  =  𝑒  →  ( 𝑙 ‘ ∪  dom  𝑙 )  =  ( 𝑒 ‘ ∪  dom  𝑒 ) ) | 
						
							| 115 | 114 | breqd | ⊢ ( 𝑙  =  𝑒  →  ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  ↔  𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖 ) ) | 
						
							| 116 | 115 | imbi1d | ⊢ ( 𝑙  =  𝑒  →  ( ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) )  ↔  ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) ) | 
						
							| 117 | 112 116 | raleqbidv | ⊢ ( 𝑙  =  𝑒  →  ( ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) )  ↔  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) ) | 
						
							| 118 | 117 | anbi2d | ⊢ ( 𝑙  =  𝑒  →  ( ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) )  ↔  ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) ) ) | 
						
							| 119 | 112 118 | rexeqbidv | ⊢ ( 𝑙  =  𝑒  →  ( ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) )  ↔  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) ) ) | 
						
							| 120 | 119 | opabbidv | ⊢ ( 𝑙  =  𝑒  →  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) }  =  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) | 
						
							| 121 | 110 111 120 | supeq123d | ⊢ ( 𝑙  =  𝑒  →  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } )  =  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) | 
						
							| 122 | 121 | mpteq2dv | ⊢ ( 𝑙  =  𝑒  →  ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) )  =  ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ) | 
						
							| 123 | 111 | difeq1d | ⊢ ( 𝑙  =  𝑒  →  ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 )  =  ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) | 
						
							| 124 | 122 123 | fveq12d | ⊢ ( 𝑙  =  𝑒  →  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) )  =  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) | 
						
							| 125 | 124 | mpteq2dv | ⊢ ( 𝑙  =  𝑒  →  ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) )  =  ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) | 
						
							| 126 |  | recseq | ⊢ ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) )  =  ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) )  →  recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) ) | 
						
							| 127 | 125 126 | syl | ⊢ ( 𝑙  =  𝑒  →  recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) ) | 
						
							| 128 | 127 | cnveqd | ⊢ ( 𝑙  =  𝑒  →  ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  =  ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) ) ) | 
						
							| 129 | 128 | imaeq1d | ⊢ ( 𝑙  =  𝑒  →  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  =  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } ) ) | 
						
							| 130 | 129 | inteqd | ⊢ ( 𝑙  =  𝑒  →  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  =  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } ) ) | 
						
							| 131 | 128 | imaeq1d | ⊢ ( 𝑙  =  𝑒  →  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  =  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) ) | 
						
							| 132 | 131 | inteqd | ⊢ ( 𝑙  =  𝑒  →  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  =  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) ) | 
						
							| 133 | 130 132 | eleq12d | ⊢ ( 𝑙  =  𝑒  →  ( ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } )  ↔  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) ) ) | 
						
							| 134 | 133 | opabbidv | ⊢ ( 𝑙  =  𝑒  →  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) }  =  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } ) | 
						
							| 135 | 104 109 134 | ifbieq12d | ⊢ ( 𝑙  =  𝑒  →  if ( dom  𝑙  =  ∪  dom  𝑙 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  =  if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } ) ) | 
						
							| 136 | 111 | sqxpeqd | ⊢ ( 𝑙  =  𝑒  →  ( ( 𝑅1 ‘ dom  𝑙 )  ×  ( 𝑅1 ‘ dom  𝑙 ) )  =  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) | 
						
							| 137 | 135 136 | ineq12d | ⊢ ( 𝑙  =  𝑒  →  ( if ( dom  𝑙  =  ∪  dom  𝑙 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑙 )  ×  ( 𝑅1 ‘ dom  𝑙 ) ) )  =  ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) ) | 
						
							| 138 | 137 | cbvmptv | ⊢ ( 𝑙  ∈  V  ↦  ( if ( dom  𝑙  =  ∪  dom  𝑙 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑙 )  ×  ( 𝑅1 ‘ dom  𝑙 ) ) ) )  =  ( 𝑒  ∈  V  ↦  ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) ) | 
						
							| 139 |  | recseq | ⊢ ( ( 𝑙  ∈  V  ↦  ( if ( dom  𝑙  =  ∪  dom  𝑙 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑙 )  ×  ( 𝑅1 ‘ dom  𝑙 ) ) ) )  =  ( 𝑒  ∈  V  ↦  ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) )  →  recs ( ( 𝑙  ∈  V  ↦  ( if ( dom  𝑙  =  ∪  dom  𝑙 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑙 )  ×  ( 𝑅1 ‘ dom  𝑙 ) ) ) ) )  =  recs ( ( 𝑒  ∈  V  ↦  ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) ) ) ) | 
						
							| 140 | 138 139 | ax-mp | ⊢ recs ( ( 𝑙  ∈  V  ↦  ( if ( dom  𝑙  =  ∪  dom  𝑙 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑙 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑙 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑙 ) ( 𝑗 ( 𝑙 ‘ ∪  dom  𝑙 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑙 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑙 )  ×  ( 𝑅1 ‘ dom  𝑙 ) ) ) ) )  =  recs ( ( 𝑒  ∈  V  ↦  ( if ( dom  𝑒  =  ∪  dom  𝑒 ,  { 〈 𝑔 ,  ℎ 〉  ∣  ( ( rank ‘ 𝑔 )  E  ( rank ‘ ℎ )  ∨  ( ( rank ‘ 𝑔 )  =  ( rank ‘ ℎ )  ∧  𝑔 ( 𝑒 ‘ suc  ( rank ‘ 𝑔 ) ) ℎ ) ) } ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { 𝑔 } )  ∈  ∩  ( ◡ recs ( ( 𝑔  ∈  V  ↦  ( ( 𝑔  ∈  V  ↦  sup ( ( 𝑦 ‘ 𝑔 ) ,  ( 𝑅1 ‘ dom  𝑒 ) ,  { 〈 𝑔 ,  ℎ 〉  ∣  ∃ 𝑖  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( ( 𝑖  ∈  ℎ  ∧  ¬  𝑖  ∈  𝑔 )  ∧  ∀ 𝑗  ∈  ( 𝑅1 ‘ ∪  dom  𝑒 ) ( 𝑗 ( 𝑒 ‘ ∪  dom  𝑒 ) 𝑖  →  ( 𝑗  ∈  𝑔  ↔  𝑗  ∈  ℎ ) ) ) } ) ) ‘ ( ( 𝑅1 ‘ dom  𝑒 )  ∖  ran  𝑔 ) ) ) )  “  { ℎ } ) } )  ∩  ( ( 𝑅1 ‘ dom  𝑒 )  ×  ( 𝑅1 ‘ dom  𝑒 ) ) ) ) ) | 
						
							| 141 |  | neeq1 | ⊢ ( 𝑎  =  𝑐  →  ( 𝑎  ≠  ∅  ↔  𝑐  ≠  ∅ ) ) | 
						
							| 142 |  | fveq2 | ⊢ ( 𝑎  =  𝑐  →  ( 𝑦 ‘ 𝑎 )  =  ( 𝑦 ‘ 𝑐 ) ) | 
						
							| 143 |  | pweq | ⊢ ( 𝑎  =  𝑐  →  𝒫  𝑎  =  𝒫  𝑐 ) | 
						
							| 144 | 143 | ineq1d | ⊢ ( 𝑎  =  𝑐  →  ( 𝒫  𝑎  ∩  Fin )  =  ( 𝒫  𝑐  ∩  Fin ) ) | 
						
							| 145 | 144 | difeq1d | ⊢ ( 𝑎  =  𝑐  →  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } )  =  ( ( 𝒫  𝑐  ∩  Fin )  ∖  { ∅ } ) ) | 
						
							| 146 | 142 145 | eleq12d | ⊢ ( 𝑎  =  𝑐  →  ( ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } )  ↔  ( 𝑦 ‘ 𝑐 )  ∈  ( ( 𝒫  𝑐  ∩  Fin )  ∖  { ∅ } ) ) ) | 
						
							| 147 | 141 146 | imbi12d | ⊢ ( 𝑎  =  𝑐  →  ( ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) )  ↔  ( 𝑐  ≠  ∅  →  ( 𝑦 ‘ 𝑐 )  ∈  ( ( 𝒫  𝑐  ∩  Fin )  ∖  { ∅ } ) ) ) ) | 
						
							| 148 | 147 | cbvralvw | ⊢ ( ∀ 𝑎  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ( 𝑎  ≠  ∅  →  ( 𝑦 ‘ 𝑎 )  ∈  ( ( 𝒫  𝑎  ∩  Fin )  ∖  { ∅ } ) )  ↔  ∀ 𝑐  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ( 𝑐  ≠  ∅  →  ( 𝑦 ‘ 𝑐 )  ∈  ( ( 𝒫  𝑐  ∩  Fin )  ∖  { ∅ } ) ) ) | 
						
							| 149 | 2 148 | sylib | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  𝒫  ( 𝑅1 ‘ 𝐴 ) ( 𝑐  ≠  ∅  →  ( 𝑦 ‘ 𝑐 )  ∈  ( ( 𝒫  𝑐  ∩  Fin )  ∖  { ∅ } ) ) ) | 
						
							| 150 | 31 39 47 86 100 101 140 1 149 | aomclem7 | ⊢ ( 𝜑  →  ∃ 𝑏 𝑏  We  ( 𝑅1 ‘ 𝐴 ) ) |