Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 < 𝑛 ↔ 𝐴 < 𝑛 ) ) |
2 |
1
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ↔ ∃ 𝑛 ∈ ℕ 𝐴 < 𝑛 ) ) |
3 |
|
nnunb |
⊢ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) |
4 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
5 |
3 4
|
mpbir |
⊢ ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) |
6 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ↔ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
7 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
8 |
|
axlttri |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑦 < 𝑛 ↔ ¬ ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑦 < 𝑛 ↔ ¬ ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ) ) |
10 |
|
equcom |
⊢ ( 𝑦 = 𝑛 ↔ 𝑛 = 𝑦 ) |
11 |
10
|
orbi1i |
⊢ ( ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ↔ ( 𝑛 = 𝑦 ∨ 𝑛 < 𝑦 ) ) |
12 |
|
orcom |
⊢ ( ( 𝑛 = 𝑦 ∨ 𝑛 < 𝑦 ) ↔ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
13 |
11 12
|
bitri |
⊢ ( ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ↔ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
14 |
13
|
notbii |
⊢ ( ¬ ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ↔ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
15 |
9 14
|
bitrdi |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑦 < 𝑛 ↔ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) ) |
16 |
15
|
biimprd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → 𝑦 < 𝑛 ) ) |
17 |
16
|
reximdva |
⊢ ( 𝑦 ∈ ℝ → ( ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ) ) |
18 |
6 17
|
syl5bir |
⊢ ( 𝑦 ∈ ℝ → ( ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ) ) |
19 |
18
|
ralimia |
⊢ ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ) |
20 |
5 19
|
ax-mp |
⊢ ∀ 𝑦 ∈ ℝ ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 |
21 |
2 20
|
vtoclri |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝐴 < 𝑛 ) |