Metamath Proof Explorer


Theorem archnq

Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion archnq ( 𝐴Q → ∃ 𝑥N 𝐴 <Q𝑥 , 1o ⟩ )

Proof

Step Hyp Ref Expression
1 elpqn ( 𝐴Q𝐴 ∈ ( N × N ) )
2 xp1st ( 𝐴 ∈ ( N × N ) → ( 1st𝐴 ) ∈ N )
3 1 2 syl ( 𝐴Q → ( 1st𝐴 ) ∈ N )
4 1pi 1oN
5 addclpi ( ( ( 1st𝐴 ) ∈ N ∧ 1oN ) → ( ( 1st𝐴 ) +N 1o ) ∈ N )
6 3 4 5 sylancl ( 𝐴Q → ( ( 1st𝐴 ) +N 1o ) ∈ N )
7 xp2nd ( 𝐴 ∈ ( N × N ) → ( 2nd𝐴 ) ∈ N )
8 1 7 syl ( 𝐴Q → ( 2nd𝐴 ) ∈ N )
9 mulclpi ( ( ( ( 1st𝐴 ) +N 1o ) ∈ N ∧ ( 2nd𝐴 ) ∈ N ) → ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) ∈ N )
10 6 8 9 syl2anc ( 𝐴Q → ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) ∈ N )
11 eqid ( ( 1st𝐴 ) +N 1o ) = ( ( 1st𝐴 ) +N 1o )
12 oveq2 ( 𝑥 = 1o → ( ( 1st𝐴 ) +N 𝑥 ) = ( ( 1st𝐴 ) +N 1o ) )
13 12 eqeq1d ( 𝑥 = 1o → ( ( ( 1st𝐴 ) +N 𝑥 ) = ( ( 1st𝐴 ) +N 1o ) ↔ ( ( 1st𝐴 ) +N 1o ) = ( ( 1st𝐴 ) +N 1o ) ) )
14 13 rspcev ( ( 1oN ∧ ( ( 1st𝐴 ) +N 1o ) = ( ( 1st𝐴 ) +N 1o ) ) → ∃ 𝑥N ( ( 1st𝐴 ) +N 𝑥 ) = ( ( 1st𝐴 ) +N 1o ) )
15 4 11 14 mp2an 𝑥N ( ( 1st𝐴 ) +N 𝑥 ) = ( ( 1st𝐴 ) +N 1o )
16 ltexpi ( ( ( 1st𝐴 ) ∈ N ∧ ( ( 1st𝐴 ) +N 1o ) ∈ N ) → ( ( 1st𝐴 ) <N ( ( 1st𝐴 ) +N 1o ) ↔ ∃ 𝑥N ( ( 1st𝐴 ) +N 𝑥 ) = ( ( 1st𝐴 ) +N 1o ) ) )
17 15 16 mpbiri ( ( ( 1st𝐴 ) ∈ N ∧ ( ( 1st𝐴 ) +N 1o ) ∈ N ) → ( 1st𝐴 ) <N ( ( 1st𝐴 ) +N 1o ) )
18 3 6 17 syl2anc ( 𝐴Q → ( 1st𝐴 ) <N ( ( 1st𝐴 ) +N 1o ) )
19 nlt1pi ¬ ( 2nd𝐴 ) <N 1o
20 ltmpi ( ( ( 1st𝐴 ) +N 1o ) ∈ N → ( ( 2nd𝐴 ) <N 1o ↔ ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N 1o ) ) )
21 6 20 syl ( 𝐴Q → ( ( 2nd𝐴 ) <N 1o ↔ ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N 1o ) ) )
22 mulidpi ( ( ( 1st𝐴 ) +N 1o ) ∈ N → ( ( ( 1st𝐴 ) +N 1o ) ·N 1o ) = ( ( 1st𝐴 ) +N 1o ) )
23 6 22 syl ( 𝐴Q → ( ( ( 1st𝐴 ) +N 1o ) ·N 1o ) = ( ( 1st𝐴 ) +N 1o ) )
24 23 breq2d ( 𝐴Q → ( ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N 1o ) ↔ ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( 1st𝐴 ) +N 1o ) ) )
25 21 24 bitrd ( 𝐴Q → ( ( 2nd𝐴 ) <N 1o ↔ ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( 1st𝐴 ) +N 1o ) ) )
26 19 25 mtbii ( 𝐴Q → ¬ ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( 1st𝐴 ) +N 1o ) )
27 ltsopi <N Or N
28 ltrelpi <N ⊆ ( N × N )
29 27 28 sotri3 ( ( ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) ∈ N ∧ ( 1st𝐴 ) <N ( ( 1st𝐴 ) +N 1o ) ∧ ¬ ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) <N ( ( 1st𝐴 ) +N 1o ) ) → ( 1st𝐴 ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) )
30 10 18 26 29 syl3anc ( 𝐴Q → ( 1st𝐴 ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) )
31 pinq ( ( ( 1st𝐴 ) +N 1o ) ∈ N → ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ∈ Q )
32 6 31 syl ( 𝐴Q → ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ∈ Q )
33 ordpinq ( ( 𝐴Q ∧ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ∈ Q ) → ( 𝐴 <Q ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ↔ ( ( 1st𝐴 ) ·N ( 2nd ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ) <N ( ( 1st ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ·N ( 2nd𝐴 ) ) ) )
34 32 33 mpdan ( 𝐴Q → ( 𝐴 <Q ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ↔ ( ( 1st𝐴 ) ·N ( 2nd ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ) <N ( ( 1st ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ·N ( 2nd𝐴 ) ) ) )
35 ovex ( ( 1st𝐴 ) +N 1o ) ∈ V
36 1oex 1o ∈ V
37 35 36 op2nd ( 2nd ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) = 1o
38 37 oveq2i ( ( 1st𝐴 ) ·N ( 2nd ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ) = ( ( 1st𝐴 ) ·N 1o )
39 mulidpi ( ( 1st𝐴 ) ∈ N → ( ( 1st𝐴 ) ·N 1o ) = ( 1st𝐴 ) )
40 3 39 syl ( 𝐴Q → ( ( 1st𝐴 ) ·N 1o ) = ( 1st𝐴 ) )
41 38 40 eqtrid ( 𝐴Q → ( ( 1st𝐴 ) ·N ( 2nd ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ) = ( 1st𝐴 ) )
42 35 36 op1st ( 1st ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) = ( ( 1st𝐴 ) +N 1o )
43 42 oveq1i ( ( 1st ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ·N ( 2nd𝐴 ) ) = ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) )
44 43 a1i ( 𝐴Q → ( ( 1st ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ·N ( 2nd𝐴 ) ) = ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) )
45 41 44 breq12d ( 𝐴Q → ( ( ( 1st𝐴 ) ·N ( 2nd ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ) <N ( ( 1st ‘ ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) ·N ( 2nd𝐴 ) ) ↔ ( 1st𝐴 ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) ) )
46 34 45 bitrd ( 𝐴Q → ( 𝐴 <Q ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ↔ ( 1st𝐴 ) <N ( ( ( 1st𝐴 ) +N 1o ) ·N ( 2nd𝐴 ) ) ) )
47 30 46 mpbird ( 𝐴Q𝐴 <Q ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ )
48 opeq1 ( 𝑥 = ( ( 1st𝐴 ) +N 1o ) → ⟨ 𝑥 , 1o ⟩ = ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ )
49 48 breq2d ( 𝑥 = ( ( 1st𝐴 ) +N 1o ) → ( 𝐴 <Q𝑥 , 1o ⟩ ↔ 𝐴 <Q ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) )
50 49 rspcev ( ( ( ( 1st𝐴 ) +N 1o ) ∈ N𝐴 <Q ⟨ ( ( 1st𝐴 ) +N 1o ) , 1o ⟩ ) → ∃ 𝑥N 𝐴 <Q𝑥 , 1o ⟩ )
51 6 47 50 syl2anc ( 𝐴Q → ∃ 𝑥N 𝐴 <Q𝑥 , 1o ⟩ )