| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 |  | gt0ne0 | ⊢ ( ( ( ℑ ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( ℑ ‘ 𝐴 )  =  ( ℑ ‘ 0 ) ) | 
						
							| 5 |  | im0 | ⊢ ( ℑ ‘ 0 )  =  0 | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( ℑ ‘ 𝐴 )  =  0 ) | 
						
							| 7 | 6 | necon3i | ⊢ ( ( ℑ ‘ 𝐴 )  ≠  0  →  𝐴  ≠  0 ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  𝐴  ≠  0 ) | 
						
							| 9 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 | 8 9 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 11 | 10 | imcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ 𝐴 ) ) | 
						
							| 13 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 16 | 15 | mul01d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  0 )  =  0 ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 18 |  | absrpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 19 | 8 18 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 20 | 19 | rpne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 21 | 17 15 20 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 𝐴  /  ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 22 | 14 21 | immul2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( abs ‘ 𝐴 )  ·  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) )  =  ( ( abs ‘ 𝐴 )  ·  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 23 | 17 15 20 | divcan2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( 𝐴  /  ( abs ‘ 𝐴 ) ) )  =  𝐴 ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( abs ‘ 𝐴 )  ·  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 25 | 22 24 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 26 | 12 16 25 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  0 )  <  ( ( abs ‘ 𝐴 )  ·  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 27 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 29 | 21 | imcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 30 | 28 29 19 | ltmul2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) )  ↔  ( ( abs ‘ 𝐴 )  ·  0 )  <  ( ( abs ‘ 𝐴 )  ·  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 31 | 26 30 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 32 |  | efiarg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 33 | 8 32 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  =  ( ℑ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 35 | 31 34 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 36 |  | resinval | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  →  ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 37 | 11 36 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 38 | 35 37 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 39 | 11 | resincld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 40 | 39 | lt0neg2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ↔  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  0 ) ) | 
						
							| 41 | 38 40 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  0 ) | 
						
							| 42 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 43 |  | readdcl | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ℝ ) | 
						
							| 44 | 11 42 43 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ℝ ) | 
						
							| 46 |  | df-neg | ⊢ - π  =  ( 0  −  π ) | 
						
							| 47 |  | logimcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) | 
						
							| 48 | 8 47 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) | 
						
							| 49 | 48 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 50 | 42 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 51 |  | ltle | ⊢ ( ( - π  ∈  ℝ  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 52 | 50 11 51 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 53 | 49 52 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 54 | 46 53 | eqbrtrrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  −  π )  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 55 | 42 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  π  ∈  ℝ ) | 
						
							| 56 | 28 55 11 | lesubaddd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( 0  −  π )  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) )  ↔  0  ≤  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) ) ) | 
						
							| 57 | 54 56 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  0  ≤  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) ) | 
						
							| 59 | 11 28 55 | leadd1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ≤  ( 0  +  π ) ) ) | 
						
							| 60 | 59 | biimpa | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ≤  ( 0  +  π ) ) | 
						
							| 61 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 62 | 61 | addlidi | ⊢ ( 0  +  π )  =  π | 
						
							| 63 | 60 62 | breqtrdi | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ≤  π ) | 
						
							| 64 | 27 42 | elicc2i | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ( 0 [,] π )  ↔  ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ℝ  ∧  0  ≤  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∧  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ≤  π ) ) | 
						
							| 65 | 45 58 63 64 | syl3anbrc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ( 0 [,] π ) ) | 
						
							| 66 |  | sinq12ge0 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π )  ∈  ( 0 [,] π )  →  0  ≤  ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  0  ≤  ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) ) ) | 
						
							| 68 | 11 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 69 |  | sinppi | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ  →  ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) )  =  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) )  =  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  +  π ) )  =  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 72 | 67 71 | breqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 )  →  0  ≤  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0  →  0  ≤  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 74 | 73 | con3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ¬  0  ≤  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  →  ¬  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 ) ) | 
						
							| 75 | 39 | renegcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 76 |  | ltnle | ⊢ ( ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  0  ↔  ¬  0  ≤  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 77 | 75 27 76 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  0  ↔  ¬  0  ≤  - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 78 |  | ltnle | ⊢ ( ( 0  ∈  ℝ  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ↔  ¬  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 ) ) | 
						
							| 79 | 27 11 78 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ↔  ¬  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  0 ) ) | 
						
							| 80 | 74 77 79 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  0  →  0  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 81 | 41 80 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 82 | 48 | simprd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) | 
						
							| 83 |  | rpre | ⊢ ( - 𝐴  ∈  ℝ+  →  - 𝐴  ∈  ℝ ) | 
						
							| 84 | 83 | renegcld | ⊢ ( - 𝐴  ∈  ℝ+  →  - - 𝐴  ∈  ℝ ) | 
						
							| 85 |  | negneg | ⊢ ( 𝐴  ∈  ℂ  →  - - 𝐴  =  𝐴 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - - 𝐴  =  𝐴 ) | 
						
							| 87 | 86 | eleq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - - 𝐴  ∈  ℝ  ↔  𝐴  ∈  ℝ ) ) | 
						
							| 88 | 84 87 | imbitrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) ) | 
						
							| 89 |  | lognegb | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( - 𝐴  ∈  ℝ+  ↔  ( ℑ ‘ ( log ‘ 𝐴 ) )  =  π ) ) | 
						
							| 90 | 8 89 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( - 𝐴  ∈  ℝ+  ↔  ( ℑ ‘ ( log ‘ 𝐴 ) )  =  π ) ) | 
						
							| 91 |  | reim0b | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 93 | 88 90 92 | 3imtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  =  π  →  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 94 | 93 | necon3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  ≠  0  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≠  π ) ) | 
						
							| 95 | 3 94 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≠  π ) | 
						
							| 96 | 95 | necomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  π  ≠  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 97 | 11 55 82 96 | leneltd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) | 
						
							| 98 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 99 | 42 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 100 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( 0 (,) π )  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  0  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) ) ) | 
						
							| 101 | 98 99 100 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( 0 (,) π )  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  0  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) ) | 
						
							| 102 | 11 81 97 101 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( 0 (,) π ) ) |