| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  <  0 ) | 
						
							| 2 | 1 | lt0ne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( ℑ ‘ 𝐴 )  =  ( ℑ ‘ 0 ) ) | 
						
							| 4 |  | im0 | ⊢ ( ℑ ‘ 0 )  =  0 | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( ℑ ‘ 𝐴 )  =  0 ) | 
						
							| 6 | 5 | necon3i | ⊢ ( ( ℑ ‘ 𝐴 )  ≠  0  →  𝐴  ≠  0 ) | 
						
							| 7 | 2 6 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  𝐴  ≠  0 ) | 
						
							| 8 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 | 7 8 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 | 9 | imcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 11 |  | logcj | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≠  0 )  →  ( log ‘ ( ∗ ‘ 𝐴 ) )  =  ( ∗ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 12 | 2 11 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( log ‘ ( ∗ ‘ 𝐴 ) )  =  ( ∗ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 14 | 9 | imcjd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 15 | 13 14 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 16 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 17 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 19 | 18 | lt0neg1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ 𝐴 )  <  0  ↔  0  <  - ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 20 | 1 19 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  0  <  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 21 |  | imcj | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ ( ∗ ‘ 𝐴 ) )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( ∗ ‘ 𝐴 ) )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 23 | 20 22 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  0  <  ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 24 |  | argimgt0 | ⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  0  <  ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) )  →  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  ∈  ( 0 (,) π ) ) | 
						
							| 25 | 16 23 24 | syl2an2r | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  ∈  ( 0 (,) π ) ) | 
						
							| 26 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  ∈  ( 0 (,) π )  →  ( 0  <  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  ∧  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  <  π ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( 0  <  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  ∧  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  <  π ) ) | 
						
							| 28 | 27 | simprd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) )  <  π ) | 
						
							| 29 | 15 28 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) | 
						
							| 30 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 31 |  | ltnegcon1 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π  ↔  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 32 | 10 30 31 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π  ↔  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 33 | 29 32 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 34 | 27 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  0  <  ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ) | 
						
							| 35 | 34 15 | breqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  0  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 36 | 10 | lt0neg1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0  ↔  0  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 37 | 35 36 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0 ) | 
						
							| 38 | 30 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 39 | 38 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 40 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 41 |  | elioo2 | ⊢ ( ( - π  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - π (,) 0 )  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0 ) ) ) | 
						
							| 42 | 39 40 41 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - π (,) 0 )  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0 ) ) | 
						
							| 43 | 10 33 37 42 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - π (,) 0 ) ) |