Metamath Proof Explorer


Theorem argrege0

Description: Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion argrege0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )

Proof

Step Hyp Ref Expression
1 logcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ )
2 1 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ )
3 2 imcld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ )
4 simp3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ 𝐴 ) )
5 simp1 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ )
6 5 abscld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ )
7 6 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ )
8 7 mul01d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 )
9 absrpcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
10 9 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
11 10 rpne0d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 )
12 5 7 11 divcld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ )
13 6 12 remul2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) )
14 5 7 11 divcan2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 )
15 14 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) )
16 13 15 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) )
17 4 8 16 3brtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) )
18 0re 0 ∈ ℝ
19 18 a1i ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ )
20 12 recld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ )
21 19 20 10 lemul2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 0 ≤ ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) )
22 17 21 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) )
23 efiarg ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )
24 23 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )
25 24 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) )
26 22 25 breqtrrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
27 recosval ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
28 3 27 syl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
29 26 28 breqtrrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
30 halfpire ( π / 2 ) ∈ ℝ
31 pirp π ∈ ℝ+
32 rphalfcl ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ )
33 rpge0 ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) )
34 31 32 33 mp2b 0 ≤ ( π / 2 )
35 pire π ∈ ℝ
36 rphalflt ( π ∈ ℝ+ → ( π / 2 ) < π )
37 31 36 ax-mp ( π / 2 ) < π
38 30 35 37 ltleii ( π / 2 ) ≤ π
39 18 35 elicc2i ( ( π / 2 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ π ) )
40 30 34 38 39 mpbir3an ( π / 2 ) ∈ ( 0 [,] π )
41 3 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ )
42 41 abscld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ )
43 41 absge0d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
44 logimcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) )
45 44 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) )
46 45 simpld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) )
47 35 renegcli - π ∈ ℝ
48 ltle ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
49 47 3 48 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
50 46 49 mpd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) )
51 45 simprd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π )
52 absle ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) )
53 3 35 52 sylancl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) )
54 50 51 53 mpbir2and ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π )
55 18 35 elicc2i ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) )
56 42 43 54 55 syl3anbrc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) )
57 cosord ( ( ( π / 2 ) ∈ ( 0 [,] π ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) → ( ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) < ( cos ‘ ( π / 2 ) ) ) )
58 40 56 57 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) < ( cos ‘ ( π / 2 ) ) ) )
59 fveq2 ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
60 59 a1i ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
61 cosneg ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
62 41 61 syl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
63 fveqeq2 ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
64 62 63 syl5ibrcom ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
65 3 absord ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) ∨ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
66 60 64 65 mpjaod ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
67 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
68 67 a1i ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( π / 2 ) ) = 0 )
69 66 68 breq12d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) < ( cos ‘ ( π / 2 ) ) ↔ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) )
70 58 69 bitrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) )
71 70 notbid ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ¬ ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ¬ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) )
72 lenlt ( ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ¬ ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
73 42 30 72 sylancl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ¬ ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
74 3 recoscld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ )
75 lenlt ( ( 0 ∈ ℝ ∧ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) → ( 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ¬ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) )
76 18 74 75 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ¬ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) )
77 71 73 76 3bitr4d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
78 29 77 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) )
79 absle ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ( - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) )
80 3 30 79 sylancl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ( - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) )
81 78 80 mpbid ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) )
82 81 simpld ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) )
83 81 simprd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) )
84 30 renegcli - ( π / 2 ) ∈ ℝ
85 84 30 elicc2i ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) )
86 3 82 83 85 syl3anbrc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )