| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 |  | gt0ne0 | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ≠  0 ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ≠  0 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( ℜ ‘ 𝐴 )  =  ( ℜ ‘ 0 ) ) | 
						
							| 5 |  | re0 | ⊢ ( ℜ ‘ 0 )  =  0 | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( ℜ ‘ 𝐴 )  =  0 ) | 
						
							| 7 | 6 | necon3i | ⊢ ( ( ℜ ‘ 𝐴 )  ≠  0  →  𝐴  ≠  0 ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  𝐴  ≠  0 ) | 
						
							| 9 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 | 8 9 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 11 | 10 | imcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 12 |  | coshalfpi | ⊢ ( cos ‘ ( π  /  2 ) )  =  0 | 
						
							| 13 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ 𝐴 ) ) | 
						
							| 14 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 17 | 16 | mul01d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  0 )  =  0 ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 19 |  | absrpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 20 | 8 19 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 22 | 18 16 21 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 𝐴  /  ( abs ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 23 | 15 22 | remul2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ( abs ‘ 𝐴 )  ·  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) )  =  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 24 | 18 16 21 | divcan2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( 𝐴  /  ( abs ‘ 𝐴 ) ) )  =  𝐴 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ( abs ‘ 𝐴 )  ·  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 26 | 23 25 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 27 | 13 17 26 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ 𝐴 )  ·  0 )  <  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 28 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 30 | 22 | recld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 31 | 29 30 20 | ltmul2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 0  <  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) )  ↔  ( ( abs ‘ 𝐴 )  ·  0 )  <  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 32 | 27 31 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 33 |  | efiarg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 34 | 8 33 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )  =  ( ℜ ‘ ( 𝐴  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 36 | 32 35 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 37 |  | recosval | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℜ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 38 | 11 37 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℜ ‘ ( exp ‘ ( i  ·  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 39 | 36 38 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ 𝐴 ) )  →  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ 𝐴 ) )  →  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 42 | 11 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 43 |  | cosneg | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ  →  ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 45 |  | fveqeq2 | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ 𝐴 ) )  →  ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ↔  ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 46 | 44 45 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ 𝐴 ) )  →  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 47 | 11 | absord | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∨  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 48 | 41 46 47 | mpjaod | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 49 | 39 48 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 50 | 12 49 | eqbrtrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( cos ‘ ( π  /  2 ) )  <  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 51 | 42 | abscld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 52 | 42 | absge0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ≤  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 53 |  | logimcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) | 
						
							| 54 | 8 53 | syldan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) | 
						
							| 55 | 54 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 56 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 57 | 56 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 58 |  | ltle | ⊢ ( ( - π  ∈  ℝ  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 59 | 57 11 58 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 60 | 55 59 | mpd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 61 | 54 | simprd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) | 
						
							| 62 |  | absle | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π  ↔  ( - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) ) | 
						
							| 63 | 11 56 62 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π  ↔  ( - π  ≤  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ≤  π ) ) ) | 
						
							| 64 | 60 61 63 | mpbir2and | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 65 | 28 56 | elicc2i | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ( 0 [,] π )  ↔  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∧  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) ) | 
						
							| 66 | 51 52 64 65 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ( 0 [,] π ) ) | 
						
							| 67 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 68 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 69 |  | rphalfcl | ⊢ ( π  ∈  ℝ+  →  ( π  /  2 )  ∈  ℝ+ ) | 
						
							| 70 |  | rpge0 | ⊢ ( ( π  /  2 )  ∈  ℝ+  →  0  ≤  ( π  /  2 ) ) | 
						
							| 71 | 68 69 70 | mp2b | ⊢ 0  ≤  ( π  /  2 ) | 
						
							| 72 |  | rphalflt | ⊢ ( π  ∈  ℝ+  →  ( π  /  2 )  <  π ) | 
						
							| 73 | 68 72 | ax-mp | ⊢ ( π  /  2 )  <  π | 
						
							| 74 | 67 56 73 | ltleii | ⊢ ( π  /  2 )  ≤  π | 
						
							| 75 | 28 56 | elicc2i | ⊢ ( ( π  /  2 )  ∈  ( 0 [,] π )  ↔  ( ( π  /  2 )  ∈  ℝ  ∧  0  ≤  ( π  /  2 )  ∧  ( π  /  2 )  ≤  π ) ) | 
						
							| 76 | 67 71 74 75 | mpbir3an | ⊢ ( π  /  2 )  ∈  ( 0 [,] π ) | 
						
							| 77 |  | cosord | ⊢ ( ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ( 0 [,] π )  ∧  ( π  /  2 )  ∈  ( 0 [,] π ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( π  /  2 )  ↔  ( cos ‘ ( π  /  2 ) )  <  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 78 | 66 76 77 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( π  /  2 )  ↔  ( cos ‘ ( π  /  2 ) )  <  ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 79 | 50 78 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( π  /  2 ) ) | 
						
							| 80 |  | abslt | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  ( π  /  2 )  ∈  ℝ )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( π  /  2 )  ↔  ( - ( π  /  2 )  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( π  /  2 ) ) ) ) | 
						
							| 81 | 11 67 80 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( π  /  2 )  ↔  ( - ( π  /  2 )  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( π  /  2 ) ) ) ) | 
						
							| 82 | 79 81 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - ( π  /  2 )  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( π  /  2 ) ) ) | 
						
							| 83 | 82 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( π  /  2 )  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 84 | 82 | simprd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( π  /  2 ) ) | 
						
							| 85 | 67 | renegcli | ⊢ - ( π  /  2 )  ∈  ℝ | 
						
							| 86 | 85 | rexri | ⊢ - ( π  /  2 )  ∈  ℝ* | 
						
							| 87 | 67 | rexri | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 88 |  | elioo2 | ⊢ ( ( - ( π  /  2 )  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ* )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  - ( π  /  2 )  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( π  /  2 ) ) ) ) | 
						
							| 89 | 86 87 88 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  - ( π  /  2 )  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( π  /  2 ) ) ) | 
						
							| 90 | 11 83 84 89 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) |