Description: The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
arwdm.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
Assertion | arwcd | ⊢ ( 𝐹 ∈ 𝐴 → ( coda ‘ 𝐹 ) ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
2 | arwdm.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
4 | 1 3 | arwhoma | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ( ( doma ‘ 𝐹 ) ( Homa ‘ 𝐶 ) ( coda ‘ 𝐹 ) ) ) |
5 | 3 2 | homarcl2 | ⊢ ( 𝐹 ∈ ( ( doma ‘ 𝐹 ) ( Homa ‘ 𝐶 ) ( coda ‘ 𝐹 ) ) → ( ( doma ‘ 𝐹 ) ∈ 𝐵 ∧ ( coda ‘ 𝐹 ) ∈ 𝐵 ) ) |
6 | 4 5 | syl | ⊢ ( 𝐹 ∈ 𝐴 → ( ( doma ‘ 𝐹 ) ∈ 𝐵 ∧ ( coda ‘ 𝐹 ) ∈ 𝐵 ) ) |
7 | 6 | simprd | ⊢ ( 𝐹 ∈ 𝐴 → ( coda ‘ 𝐹 ) ∈ 𝐵 ) |