Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
Assertion | arwdmcd | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 = 〈 ( doma ‘ 𝐹 ) , ( coda ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
2 | eqid | ⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) | |
3 | 1 2 | arwhoma | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ( ( doma ‘ 𝐹 ) ( Homa ‘ 𝐶 ) ( coda ‘ 𝐹 ) ) ) |
4 | 2 | homadmcd | ⊢ ( 𝐹 ∈ ( ( doma ‘ 𝐹 ) ( Homa ‘ 𝐶 ) ( coda ‘ 𝐹 ) ) → 𝐹 = 〈 ( doma ‘ 𝐹 ) , ( coda ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
5 | 3 4 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 = 〈 ( doma ‘ 𝐹 ) , ( coda ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |