Metamath Proof Explorer


Theorem arwdmcd

Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
Assertion arwdmcd ( 𝐹𝐴𝐹 = ⟨ ( doma𝐹 ) , ( coda𝐹 ) , ( 2nd𝐹 ) ⟩ )

Proof

Step Hyp Ref Expression
1 arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
2 eqid ( Homa𝐶 ) = ( Homa𝐶 )
3 1 2 arwhoma ( 𝐹𝐴𝐹 ∈ ( ( doma𝐹 ) ( Homa𝐶 ) ( coda𝐹 ) ) )
4 2 homadmcd ( 𝐹 ∈ ( ( doma𝐹 ) ( Homa𝐶 ) ( coda𝐹 ) ) → 𝐹 = ⟨ ( doma𝐹 ) , ( coda𝐹 ) , ( 2nd𝐹 ) ⟩ )
5 3 4 syl ( 𝐹𝐴𝐹 = ⟨ ( doma𝐹 ) , ( coda𝐹 ) , ( 2nd𝐹 ) ⟩ )