| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) |
| 2 |
|
eqidd |
⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑎 = 〈 𝑥 , 𝑦 , 𝑓 〉 → ( 𝑎 = 𝑏 ↔ 〈 𝑥 , 𝑦 , 𝑓 〉 = 𝑏 ) ) |
| 4 |
|
eqeq2 |
⊢ ( 𝑏 = 〈 𝑥 , 𝑦 , 𝑔 〉 → ( 〈 𝑥 , 𝑦 , 𝑓 〉 = 𝑏 ↔ 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 ) ) |
| 5 |
|
eumo |
⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| 7 |
|
moel |
⊢ ( ∃* 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ↔ ∀ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∀ 𝑏 ∈ ( Arrow ‘ 𝐶 ) 𝑎 = 𝑏 ) |
| 8 |
6 7
|
sylib |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ∀ 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∀ 𝑏 ∈ ( Arrow ‘ 𝐶 ) 𝑎 = 𝑏 ) |
| 9 |
|
eqid |
⊢ ( Arrow ‘ 𝐶 ) = ( Arrow ‘ 𝐶 ) |
| 10 |
|
eqid |
⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) |
| 11 |
9 10
|
homarw |
⊢ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑦 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 13 |
|
euex |
⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → ∃ 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ) |
| 14 |
9
|
arwrcl |
⊢ ( 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 15 |
14
|
exlimiv |
⊢ ( ∃ 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 16 |
13 15
|
syl |
⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝐶 ∈ Cat ) |
| 18 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 19 |
|
simplrl |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 20 |
|
simplrr |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 21 |
|
simprl |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 22 |
10 12 17 18 19 20 21
|
elhomai2 |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑓 〉 ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑦 ) ) |
| 23 |
11 22
|
sselid |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑓 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 24 |
|
simprr |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 25 |
10 12 17 18 19 20 24
|
elhomai2 |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑔 〉 ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑦 ) ) |
| 26 |
11 25
|
sselid |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑔 〉 ∈ ( Arrow ‘ 𝐶 ) ) |
| 27 |
3 4 8 23 26
|
rspc2dv |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 ) |
| 28 |
|
vex |
⊢ 𝑥 ∈ V |
| 29 |
|
vex |
⊢ 𝑦 ∈ V |
| 30 |
|
vex |
⊢ 𝑓 ∈ V |
| 31 |
28 29 30
|
otth |
⊢ ( 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 ↔ ( 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑓 = 𝑔 ) ) |
| 32 |
31
|
simp3bi |
⊢ ( 〈 𝑥 , 𝑦 , 𝑓 〉 = 〈 𝑥 , 𝑦 , 𝑔 〉 → 𝑓 = 𝑔 ) |
| 33 |
27 32
|
syl |
⊢ ( ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑓 = 𝑔 ) |
| 34 |
33
|
ralrimivva |
⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑓 = 𝑔 ) |
| 35 |
|
moel |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑓 = 𝑔 ) |
| 36 |
34 35
|
sylibr |
⊢ ( ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 37 |
1 2 36 16
|
isthincd |
⊢ ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ ThinCat ) |