Metamath Proof Explorer


Theorem arwhom

Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
arwhom.j 𝐽 = ( Hom ‘ 𝐶 )
Assertion arwhom ( 𝐹𝐴 → ( 2nd𝐹 ) ∈ ( ( doma𝐹 ) 𝐽 ( coda𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
2 arwhom.j 𝐽 = ( Hom ‘ 𝐶 )
3 eqid ( Homa𝐶 ) = ( Homa𝐶 )
4 1 3 arwhoma ( 𝐹𝐴𝐹 ∈ ( ( doma𝐹 ) ( Homa𝐶 ) ( coda𝐹 ) ) )
5 3 2 homahom ( 𝐹 ∈ ( ( doma𝐹 ) ( Homa𝐶 ) ( coda𝐹 ) ) → ( 2nd𝐹 ) ∈ ( ( doma𝐹 ) 𝐽 ( coda𝐹 ) ) )
6 4 5 syl ( 𝐹𝐴 → ( 2nd𝐹 ) ∈ ( ( doma𝐹 ) 𝐽 ( coda𝐹 ) ) )