Step |
Hyp |
Ref |
Expression |
1 |
|
arwrcl.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
2 |
|
arwhoma.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
3 |
1 2
|
arwval |
⊢ 𝐴 = ∪ ran 𝐻 |
4 |
3
|
eleq2i |
⊢ ( 𝐹 ∈ 𝐴 ↔ 𝐹 ∈ ∪ ran 𝐻 ) |
5 |
4
|
biimpi |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ∪ ran 𝐻 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
1
|
arwrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ Cat ) |
8 |
2 6 7
|
homaf |
⊢ ( 𝐹 ∈ 𝐴 → 𝐻 : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
9 |
|
ffn |
⊢ ( 𝐻 : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) → 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
10 |
|
fnunirn |
⊢ ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 𝐹 ∈ ∪ ran 𝐻 ↔ ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ) ) |
11 |
8 9 10
|
3syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ ∪ ran 𝐻 ↔ ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ) ) |
12 |
5 11
|
mpbid |
⊢ ( 𝐹 ∈ 𝐴 → ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
14 |
|
df-ov |
⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) |
15 |
13 14
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ↔ 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
17 |
16
|
rexxp |
⊢ ( ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
18 |
12 17
|
sylib |
⊢ ( 𝐹 ∈ 𝐴 → ∃ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
19 |
|
id |
⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
20 |
2
|
homadm |
⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → ( doma ‘ 𝐹 ) = 𝑥 ) |
21 |
2
|
homacd |
⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → ( coda ‘ 𝐹 ) = 𝑦 ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) = ( 𝑥 𝐻 𝑦 ) ) |
23 |
19 22
|
eleqtrrd |
⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
24 |
23
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
25 |
24
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
26 |
18 25
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |