Metamath Proof Explorer


Theorem arwrcl

Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
Assertion arwrcl ( 𝐹𝐴𝐶 ∈ Cat )

Proof

Step Hyp Ref Expression
1 arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
2 df-arw Arrow = ( 𝑐 ∈ Cat ↦ ran ( Homa𝑐 ) )
3 2 dmmptss dom Arrow ⊆ Cat
4 elfvdm ( 𝐹 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ dom Arrow )
5 4 1 eleq2s ( 𝐹𝐴𝐶 ∈ dom Arrow )
6 3 5 sselid ( 𝐹𝐴𝐶 ∈ Cat )