Metamath Proof Explorer
Description: The first component of an arrow is the ordered pair of domain and
codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
|
|
Ref |
Expression |
|
Hypothesis |
arwrcl.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
|
Assertion |
arwrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ Cat ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
arwrcl.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
2 |
|
df-arw |
⊢ Arrow = ( 𝑐 ∈ Cat ↦ ∪ ran ( Homa ‘ 𝑐 ) ) |
3 |
2
|
dmmptss |
⊢ dom Arrow ⊆ Cat |
4 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ dom Arrow ) |
5 |
4 1
|
eleq2s |
⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow ) |
6 |
3 5
|
sselid |
⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ Cat ) |