Step |
Hyp |
Ref |
Expression |
1 |
|
arwval.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
2 |
|
arwval.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
3 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Homa ‘ 𝑐 ) = ( Homa ‘ 𝐶 ) ) |
4 |
3 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Homa ‘ 𝑐 ) = 𝐻 ) |
5 |
4
|
rneqd |
⊢ ( 𝑐 = 𝐶 → ran ( Homa ‘ 𝑐 ) = ran 𝐻 ) |
6 |
5
|
unieqd |
⊢ ( 𝑐 = 𝐶 → ∪ ran ( Homa ‘ 𝑐 ) = ∪ ran 𝐻 ) |
7 |
|
df-arw |
⊢ Arrow = ( 𝑐 ∈ Cat ↦ ∪ ran ( Homa ‘ 𝑐 ) ) |
8 |
2
|
fvexi |
⊢ 𝐻 ∈ V |
9 |
8
|
rnex |
⊢ ran 𝐻 ∈ V |
10 |
9
|
uniex |
⊢ ∪ ran 𝐻 ∈ V |
11 |
6 7 10
|
fvmpt |
⊢ ( 𝐶 ∈ Cat → ( Arrow ‘ 𝐶 ) = ∪ ran 𝐻 ) |
12 |
7
|
fvmptndm |
⊢ ( ¬ 𝐶 ∈ Cat → ( Arrow ‘ 𝐶 ) = ∅ ) |
13 |
|
df-homa |
⊢ Homa = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) |
14 |
13
|
fvmptndm |
⊢ ( ¬ 𝐶 ∈ Cat → ( Homa ‘ 𝐶 ) = ∅ ) |
15 |
2 14
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ Cat → 𝐻 = ∅ ) |
16 |
15
|
rneqd |
⊢ ( ¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅ ) |
17 |
|
rn0 |
⊢ ran ∅ = ∅ |
18 |
16 17
|
eqtrdi |
⊢ ( ¬ 𝐶 ∈ Cat → ran 𝐻 = ∅ ) |
19 |
18
|
unieqd |
⊢ ( ¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅ ) |
20 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
21 |
19 20
|
eqtrdi |
⊢ ( ¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅ ) |
22 |
12 21
|
eqtr4d |
⊢ ( ¬ 𝐶 ∈ Cat → ( Arrow ‘ 𝐶 ) = ∪ ran 𝐻 ) |
23 |
11 22
|
pm2.61i |
⊢ ( Arrow ‘ 𝐶 ) = ∪ ran 𝐻 |
24 |
1 23
|
eqtri |
⊢ 𝐴 = ∪ ran 𝐻 |