| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							arwval.a | 
							⊢ 𝐴  =  ( Arrow ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							arwval.h | 
							⊢ 𝐻  =  ( Homa ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑐  =  𝐶  →  ( Homa ‘ 𝑐 )  =  ( Homa ‘ 𝐶 ) )  | 
						
						
							| 4 | 
							
								3 2
							 | 
							eqtr4di | 
							⊢ ( 𝑐  =  𝐶  →  ( Homa ‘ 𝑐 )  =  𝐻 )  | 
						
						
							| 5 | 
							
								4
							 | 
							rneqd | 
							⊢ ( 𝑐  =  𝐶  →  ran  ( Homa ‘ 𝑐 )  =  ran  𝐻 )  | 
						
						
							| 6 | 
							
								5
							 | 
							unieqd | 
							⊢ ( 𝑐  =  𝐶  →  ∪  ran  ( Homa ‘ 𝑐 )  =  ∪  ran  𝐻 )  | 
						
						
							| 7 | 
							
								
							 | 
							df-arw | 
							⊢ Arrow  =  ( 𝑐  ∈  Cat  ↦  ∪  ran  ( Homa ‘ 𝑐 ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝐻  ∈  V  | 
						
						
							| 9 | 
							
								8
							 | 
							rnex | 
							⊢ ran  𝐻  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							uniex | 
							⊢ ∪  ran  𝐻  ∈  V  | 
						
						
							| 11 | 
							
								6 7 10
							 | 
							fvmpt | 
							⊢ ( 𝐶  ∈  Cat  →  ( Arrow ‘ 𝐶 )  =  ∪  ran  𝐻 )  | 
						
						
							| 12 | 
							
								7
							 | 
							fvmptndm | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ( Arrow ‘ 𝐶 )  =  ∅ )  | 
						
						
							| 13 | 
							
								
							 | 
							df-homa | 
							⊢ Homa  =  ( 𝑐  ∈  Cat  ↦  ( 𝑥  ∈  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) )  ↦  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fvmptndm | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ( Homa ‘ 𝐶 )  =  ∅ )  | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqtrid | 
							⊢ ( ¬  𝐶  ∈  Cat  →  𝐻  =  ∅ )  | 
						
						
							| 16 | 
							
								15
							 | 
							rneqd | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ran  𝐻  =  ran  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							rn0 | 
							⊢ ran  ∅  =  ∅  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ran  𝐻  =  ∅ )  | 
						
						
							| 19 | 
							
								18
							 | 
							unieqd | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ∪  ran  𝐻  =  ∪  ∅ )  | 
						
						
							| 20 | 
							
								
							 | 
							uni0 | 
							⊢ ∪  ∅  =  ∅  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtrdi | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ∪  ran  𝐻  =  ∅ )  | 
						
						
							| 22 | 
							
								12 21
							 | 
							eqtr4d | 
							⊢ ( ¬  𝐶  ∈  Cat  →  ( Arrow ‘ 𝐶 )  =  ∪  ran  𝐻 )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							pm2.61i | 
							⊢ ( Arrow ‘ 𝐶 )  =  ∪  ran  𝐻  | 
						
						
							| 24 | 
							
								1 23
							 | 
							eqtri | 
							⊢ 𝐴  =  ∪  ran  𝐻  |