| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ascl0.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | ascl0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | ascl0.l | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 4 |  | ascl0.r | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 5 | 2 | lmodfgrp | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Grp ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 8 | 6 7 | grpidcl | ⊢ ( 𝐹  ∈  Grp  →  ( 0g ‘ 𝐹 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 9 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 11 | 1 2 6 9 10 | asclval | ⊢ ( ( 0g ‘ 𝐹 )  ∈  ( Base ‘ 𝐹 )  →  ( 𝐴 ‘ ( 0g ‘ 𝐹 ) )  =  ( ( 0g ‘ 𝐹 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 12 | 3 5 8 11 | 4syl | ⊢ ( 𝜑  →  ( 𝐴 ‘ ( 0g ‘ 𝐹 ) )  =  ( ( 0g ‘ 𝐹 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 14 | 13 10 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 17 | 13 2 9 7 16 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 0g ‘ 𝐹 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 18 | 3 15 17 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐹 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 19 | 12 18 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ ( 0g ‘ 𝐹 ) )  =  ( 0g ‘ 𝑊 ) ) |