Step |
Hyp |
Ref |
Expression |
1 |
|
ascl0.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
ascl0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
ascl0.l |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
ascl0.r |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
5 |
2
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
9 |
7 8
|
grpidcl |
⊢ ( 𝐹 ∈ Grp → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
11 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
13 |
1 2 7 11 12
|
asclval |
⊢ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
16 |
15 12
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
19 |
15 2 11 8 18
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
20 |
3 17 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐹 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
21 |
14 20
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝑊 ) ) |