Metamath Proof Explorer


Theorem ascldimul

Description: The algebra scalars function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015) (Proof shortened by SN, 5-Nov-2023)

Ref Expression
Hypotheses ascldimul.a 𝐴 = ( algSc ‘ 𝑊 )
ascldimul.f 𝐹 = ( Scalar ‘ 𝑊 )
ascldimul.k 𝐾 = ( Base ‘ 𝐹 )
ascldimul.t × = ( .r𝑊 )
ascldimul.s · = ( .r𝐹 )
Assertion ascldimul ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝐴𝑅 ) × ( 𝐴𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 ascldimul.a 𝐴 = ( algSc ‘ 𝑊 )
2 ascldimul.f 𝐹 = ( Scalar ‘ 𝑊 )
3 ascldimul.k 𝐾 = ( Base ‘ 𝐹 )
4 ascldimul.t × = ( .r𝑊 )
5 ascldimul.s · = ( .r𝐹 )
6 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
7 6 3ad2ant1 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → 𝑊 ∈ LMod )
8 simp2 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → 𝑅𝐾 )
9 simp3 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → 𝑆𝐾 )
10 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
11 10 3ad2ant1 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → 𝑊 ∈ Ring )
12 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
13 eqid ( 1r𝑊 ) = ( 1r𝑊 )
14 12 13 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
15 11 14 syl ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
16 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
17 12 2 16 3 5 lmodvsass ( ( 𝑊 ∈ LMod ∧ ( 𝑅𝐾𝑆𝐾 ∧ ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑅 · 𝑆 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( 𝑅 ( ·𝑠𝑊 ) ( 𝑆 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
18 7 8 9 15 17 syl13anc ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( ( 𝑅 · 𝑆 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( 𝑅 ( ·𝑠𝑊 ) ( 𝑆 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
19 2 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
20 6 19 syl ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring )
21 3 5 ringcl ( ( 𝐹 ∈ Ring ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝑅 · 𝑆 ) ∈ 𝐾 )
22 20 21 syl3an1 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝑅 · 𝑆 ) ∈ 𝐾 )
23 1 2 3 16 13 asclval ( ( 𝑅 · 𝑆 ) ∈ 𝐾 → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝑅 · 𝑆 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
24 22 23 syl ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝑅 · 𝑆 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
25 1 2 10 6 3 12 asclf ( 𝑊 ∈ AssAlg → 𝐴 : 𝐾 ⟶ ( Base ‘ 𝑊 ) )
26 25 ffvelrnda ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝐾 ) → ( 𝐴𝑆 ) ∈ ( Base ‘ 𝑊 ) )
27 26 3adant2 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝐴𝑆 ) ∈ ( Base ‘ 𝑊 ) )
28 1 2 3 12 4 16 asclmul1 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾 ∧ ( 𝐴𝑆 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴𝑅 ) × ( 𝐴𝑆 ) ) = ( 𝑅 ( ·𝑠𝑊 ) ( 𝐴𝑆 ) ) )
29 27 28 syld3an3 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( ( 𝐴𝑅 ) × ( 𝐴𝑆 ) ) = ( 𝑅 ( ·𝑠𝑊 ) ( 𝐴𝑆 ) ) )
30 1 2 3 16 13 asclval ( 𝑆𝐾 → ( 𝐴𝑆 ) = ( 𝑆 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
31 30 3ad2ant3 ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝐴𝑆 ) = ( 𝑆 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
32 31 oveq2d ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝑅 ( ·𝑠𝑊 ) ( 𝐴𝑆 ) ) = ( 𝑅 ( ·𝑠𝑊 ) ( 𝑆 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
33 29 32 eqtrd ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( ( 𝐴𝑅 ) × ( 𝐴𝑆 ) ) = ( 𝑅 ( ·𝑠𝑊 ) ( 𝑆 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
34 18 24 33 3eqtr4d ( ( 𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝐴𝑅 ) × ( 𝐴𝑆 ) ) )