Step |
Hyp |
Ref |
Expression |
1 |
|
ascldimul.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
ascldimul.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
ascldimul.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
4 |
|
ascldimul.t |
⊢ × = ( .r ‘ 𝑊 ) |
5 |
|
ascldimul.s |
⊢ · = ( .r ‘ 𝐹 ) |
6 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
8 |
|
simp2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑅 ∈ 𝐾 ) |
9 |
|
simp3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑆 ∈ 𝐾 ) |
10 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → 𝑊 ∈ Ring ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
14 |
12 13
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
15 |
11 14
|
syl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
17 |
12 2 16 3 5
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
18 |
7 8 9 15 17
|
syl13anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
19 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
20 |
6 19
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
21 |
3 5
|
ringcl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝑅 · 𝑆 ) ∈ 𝐾 ) |
22 |
20 21
|
syl3an1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝑅 · 𝑆 ) ∈ 𝐾 ) |
23 |
1 2 3 16 13
|
asclval |
⊢ ( ( 𝑅 · 𝑆 ) ∈ 𝐾 → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝑅 · 𝑆 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
25 |
1 2 10 6 3 12
|
asclf |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 : 𝐾 ⟶ ( Base ‘ 𝑊 ) ) |
26 |
25
|
ffvelrnda |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ ( Base ‘ 𝑊 ) ) |
27 |
26
|
3adant2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ ( Base ‘ 𝑊 ) ) |
28 |
1 2 3 12 4 16
|
asclmul1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ ( 𝐴 ‘ 𝑆 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) ) |
29 |
27 28
|
syld3an3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) ) |
30 |
1 2 3 16 13
|
asclval |
⊢ ( 𝑆 ∈ 𝐾 → ( 𝐴 ‘ 𝑆 ) = ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) = ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
33 |
29 32
|
eqtrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) = ( 𝑅 ( ·𝑠 ‘ 𝑊 ) ( 𝑆 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
34 |
18 24 33
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ ( 𝑅 · 𝑆 ) ) = ( ( 𝐴 ‘ 𝑅 ) × ( 𝐴 ‘ 𝑆 ) ) ) |