| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ascldimul.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | ascldimul.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | ascldimul.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | ascldimul.t | ⊢  ×   =  ( .r ‘ 𝑊 ) | 
						
							| 5 |  | ascldimul.s | ⊢  ·   =  ( .r ‘ 𝐹 ) | 
						
							| 6 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  𝑅  ∈  𝐾 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  𝑆  ∈  𝐾 ) | 
						
							| 10 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  𝑊  ∈  Ring ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 13 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 14 | 12 13 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 17 | 12 2 16 3 5 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾  ∧  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑅  ·  𝑆 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝑆 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 18 | 7 8 9 15 17 | syl13anc | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( ( 𝑅  ·  𝑆 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝑆 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 19 | 2 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring ) | 
						
							| 20 | 6 19 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  𝐹  ∈  Ring ) | 
						
							| 21 | 3 5 | ringcl | ⊢ ( ( 𝐹  ∈  Ring  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝑅  ·  𝑆 )  ∈  𝐾 ) | 
						
							| 22 | 20 21 | syl3an1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝑅  ·  𝑆 )  ∈  𝐾 ) | 
						
							| 23 | 1 2 3 16 13 | asclval | ⊢ ( ( 𝑅  ·  𝑆 )  ∈  𝐾  →  ( 𝐴 ‘ ( 𝑅  ·  𝑆 ) )  =  ( ( 𝑅  ·  𝑆 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝐴 ‘ ( 𝑅  ·  𝑆 ) )  =  ( ( 𝑅  ·  𝑆 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 25 | 1 2 10 6 3 12 | asclf | ⊢ ( 𝑊  ∈  AssAlg  →  𝐴 : 𝐾 ⟶ ( Base ‘ 𝑊 ) ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  𝐾 )  →  ( 𝐴 ‘ 𝑆 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 27 | 26 | 3adant2 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝐴 ‘ 𝑆 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 28 | 1 2 3 12 4 16 | asclmul1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  ( 𝐴 ‘ 𝑆 )  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝐴 ‘ 𝑅 )  ×  ( 𝐴 ‘ 𝑆 ) )  =  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) ) | 
						
							| 29 | 27 28 | syld3an3 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( ( 𝐴 ‘ 𝑅 )  ×  ( 𝐴 ‘ 𝑆 ) )  =  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) ) ) | 
						
							| 30 | 1 2 3 16 13 | asclval | ⊢ ( 𝑆  ∈  𝐾  →  ( 𝐴 ‘ 𝑆 )  =  ( 𝑆 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 31 | 30 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝐴 ‘ 𝑆 )  =  ( 𝑆 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝐴 ‘ 𝑆 ) )  =  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝑆 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 33 | 29 32 | eqtrd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( ( 𝐴 ‘ 𝑅 )  ×  ( 𝐴 ‘ 𝑆 ) )  =  ( 𝑅 (  ·𝑠  ‘ 𝑊 ) ( 𝑆 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 34 | 18 24 33 | 3eqtr4d | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑆  ∈  𝐾 )  →  ( 𝐴 ‘ ( 𝑅  ·  𝑆 ) )  =  ( ( 𝐴 ‘ 𝑅 )  ×  ( 𝐴 ‘ 𝑆 ) ) ) |