| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclf.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | asclf.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | asclf.r | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 4 |  | asclf.l | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | asclf.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | asclf.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐾 )  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐾 )  →  𝑥  ∈  𝐾 ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 10 | 6 9 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →  ( 1r ‘ 𝑊 )  ∈  𝐵 ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑊 )  ∈  𝐵 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐾 )  →  ( 1r ‘ 𝑊 )  ∈  𝐵 ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 14 | 6 2 13 5 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑥  ∈  𝐾  ∧  ( 1r ‘ 𝑊 )  ∈  𝐵 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  ∈  𝐵 ) | 
						
							| 15 | 7 8 12 14 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐾 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  ∈  𝐵 ) | 
						
							| 16 | 1 2 5 13 9 | asclfval | ⊢ 𝐴  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 17 | 15 16 | fmptd | ⊢ ( 𝜑  →  𝐴 : 𝐾 ⟶ 𝐵 ) |