Step |
Hyp |
Ref |
Expression |
1 |
|
asclf.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
asclf.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
asclf.r |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
4 |
|
asclf.l |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
asclf.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
asclf.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
10 |
6 9
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
14 |
6 2 13 5
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ ( 1r ‘ 𝑊 ) ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
15 |
7 8 12 14
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
16 |
1 2 5 13 9
|
asclfval |
⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
17 |
15 16
|
fmptd |
⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |