Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclfn.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
asclfn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
asclfn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
Assertion | asclfn | ⊢ 𝐴 Fn 𝐾 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfn.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
2 | asclfn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
3 | asclfn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
4 | ovex | ⊢ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ V | |
5 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
6 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
7 | 1 2 3 5 6 | asclfval | ⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
8 | 4 7 | fnmpti | ⊢ 𝐴 Fn 𝐾 |