| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclfval.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | asclfval.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | asclfval.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | asclfval.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | asclfval.o | ⊢  1   =  ( 1r ‘ 𝑊 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 | 6 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Scalar ‘ 𝑤 )  =  𝐹 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ ( Scalar ‘ 𝑤 ) )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 9 | 8 3 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ ( Scalar ‘ 𝑤 ) )  =  𝐾 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠  ‘ 𝑤 )  =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 11 | 10 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠  ‘ 𝑤 )  =   ·  ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝑥  =  𝑥 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 1r ‘ 𝑤 )  =  ( 1r ‘ 𝑊 ) ) | 
						
							| 14 | 13 5 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( 1r ‘ 𝑤 )  =   1  ) | 
						
							| 15 | 11 12 14 | oveq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) )  =  ( 𝑥  ·   1  ) ) | 
						
							| 16 | 9 15 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) )  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ·   1  ) ) ) | 
						
							| 17 |  | df-ascl | ⊢ algSc  =  ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) | 
						
							| 18 | 16 17 3 | mptfvmpt | ⊢ ( 𝑊  ∈  V  →  ( algSc ‘ 𝑊 )  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ·   1  ) ) ) | 
						
							| 19 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( algSc ‘ 𝑊 )  =  ∅ ) | 
						
							| 20 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( 𝑥  ·   1  ) )  =  ∅ | 
						
							| 21 | 19 20 | eqtr4di | ⊢ ( ¬  𝑊  ∈  V  →  ( algSc ‘ 𝑊 )  =  ( 𝑥  ∈  ∅  ↦  ( 𝑥  ·   1  ) ) ) | 
						
							| 22 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( Scalar ‘ 𝑊 )  =  ∅ ) | 
						
							| 23 | 2 22 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →  𝐹  =  ∅ ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ¬  𝑊  ∈  V  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ∅ ) ) | 
						
							| 25 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 26 | 24 25 | eqtr4di | ⊢ ( ¬  𝑊  ∈  V  →  ( Base ‘ 𝐹 )  =  ∅ ) | 
						
							| 27 | 3 26 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →  𝐾  =  ∅ ) | 
						
							| 28 | 27 | mpteq1d | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ·   1  ) )  =  ( 𝑥  ∈  ∅  ↦  ( 𝑥  ·   1  ) ) ) | 
						
							| 29 | 21 28 | eqtr4d | ⊢ ( ¬  𝑊  ∈  V  →  ( algSc ‘ 𝑊 )  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ·   1  ) ) ) | 
						
							| 30 | 18 29 | pm2.61i | ⊢ ( algSc ‘ 𝑊 )  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ·   1  ) ) | 
						
							| 31 | 1 30 | eqtri | ⊢ 𝐴  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑥  ·   1  ) ) |