Step |
Hyp |
Ref |
Expression |
1 |
|
asclfval.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
asclfval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
asclfval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
4 |
|
asclfval.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
asclfval.o |
⊢ 1 = ( 1r ‘ 𝑊 ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐹 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
11 |
10 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
12 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑥 = 𝑥 ) |
13 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 1r ‘ 𝑤 ) = ( 1r ‘ 𝑊 ) ) |
14 |
13 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 1r ‘ 𝑤 ) = 1 ) |
15 |
11 12 14
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) = ( 𝑥 · 1 ) ) |
16 |
9 15
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) ) |
17 |
|
df-ascl |
⊢ algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |
18 |
16 17 3
|
mptfvmpt |
⊢ ( 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) ) |
19 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ∅ ) |
20 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 · 1 ) ) = ∅ |
21 |
19 20
|
eqtr4di |
⊢ ( ¬ 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 · 1 ) ) ) |
22 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Scalar ‘ 𝑊 ) = ∅ ) |
23 |
2 22
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐹 = ∅ ) |
24 |
23
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐹 ) = ( Base ‘ ∅ ) ) |
25 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
26 |
24 25
|
eqtr4di |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐹 ) = ∅ ) |
27 |
3 26
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
28 |
27
|
mpteq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 · 1 ) ) ) |
29 |
21 28
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) ) |
30 |
18 29
|
pm2.61i |
⊢ ( algSc ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |
31 |
1 30
|
eqtri |
⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |