Step |
Hyp |
Ref |
Expression |
1 |
|
asclf.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
asclf.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
asclf.r |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
4 |
|
asclf.l |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
9 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
11 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
13 |
|
ringgrp |
⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
15 |
1 2 3 4 5 6
|
asclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝐹 ) ⟶ ( Base ‘ 𝑊 ) ) |
16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑊 ∈ LMod ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
20 |
6 19
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
21 |
3 20
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
23 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
24 |
6 8 2 23 5 7
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
25 |
16 17 18 22 24
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
26 |
5 7
|
grpcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
27 |
26
|
3expb |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
28 |
12 27
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
29 |
1 2 5 23 19
|
asclval |
⊢ ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
31 |
1 2 5 23 19
|
asclval |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
32 |
1 2 5 23 19
|
asclval |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
33 |
31 32
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
35 |
25 30 34
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
36 |
5 6 7 8 12 14 15 35
|
isghmd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |