Metamath Proof Explorer


Theorem asclghm

Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses asclf.a 𝐴 = ( algSc ‘ 𝑊 )
asclf.f 𝐹 = ( Scalar ‘ 𝑊 )
asclf.r ( 𝜑𝑊 ∈ Ring )
asclf.l ( 𝜑𝑊 ∈ LMod )
Assertion asclghm ( 𝜑𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) )

Proof

Step Hyp Ref Expression
1 asclf.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclf.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclf.r ( 𝜑𝑊 ∈ Ring )
4 asclf.l ( 𝜑𝑊 ∈ LMod )
5 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
6 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
7 eqid ( +g𝐹 ) = ( +g𝐹 )
8 eqid ( +g𝑊 ) = ( +g𝑊 )
9 2 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
10 4 9 syl ( 𝜑𝐹 ∈ Ring )
11 ringgrp ( 𝐹 ∈ Ring → 𝐹 ∈ Grp )
12 10 11 syl ( 𝜑𝐹 ∈ Grp )
13 ringgrp ( 𝑊 ∈ Ring → 𝑊 ∈ Grp )
14 3 13 syl ( 𝜑𝑊 ∈ Grp )
15 1 2 3 4 5 6 asclf ( 𝜑𝐴 : ( Base ‘ 𝐹 ) ⟶ ( Base ‘ 𝑊 ) )
16 4 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑊 ∈ LMod )
17 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) )
18 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) )
19 eqid ( 1r𝑊 ) = ( 1r𝑊 )
20 6 19 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
21 3 20 syl ( 𝜑 → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
22 21 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
23 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
24 6 8 2 23 5 7 lmodvsdir ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g𝐹 ) 𝑦 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ( +g𝑊 ) ( 𝑦 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
25 16 17 18 22 24 syl13anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝑥 ( +g𝐹 ) 𝑦 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ( +g𝑊 ) ( 𝑦 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
26 5 7 grpcl ( ( 𝐹 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) )
27 26 3expb ( ( 𝐹 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) )
28 12 27 sylan ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) )
29 1 2 5 23 19 asclval ( ( 𝑥 ( +g𝐹 ) 𝑦 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 𝑥 ( +g𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g𝐹 ) 𝑦 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
30 28 29 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g𝐹 ) 𝑦 ) ) = ( ( 𝑥 ( +g𝐹 ) 𝑦 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
31 1 2 5 23 19 asclval ( 𝑥 ∈ ( Base ‘ 𝐹 ) → ( 𝐴𝑥 ) = ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
32 1 2 5 23 19 asclval ( 𝑦 ∈ ( Base ‘ 𝐹 ) → ( 𝐴𝑦 ) = ( 𝑦 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
33 31 32 oveqan12d ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴𝑥 ) ( +g𝑊 ) ( 𝐴𝑦 ) ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ( +g𝑊 ) ( 𝑦 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
34 33 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( 𝐴𝑥 ) ( +g𝑊 ) ( 𝐴𝑦 ) ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ( +g𝑊 ) ( 𝑦 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ) )
35 25 30 34 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( +g𝐹 ) 𝑦 ) ) = ( ( 𝐴𝑥 ) ( +g𝑊 ) ( 𝐴𝑦 ) ) )
36 5 6 7 8 12 14 15 35 isghmd ( 𝜑𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) )