| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclf.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | asclf.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | asclf.r | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 4 |  | asclf.l | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 9 | 2 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Ring ) | 
						
							| 11 |  | ringgrp | ⊢ ( 𝐹  ∈  Ring  →  𝐹  ∈  Grp ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Grp ) | 
						
							| 13 |  | ringgrp | ⊢ ( 𝑊  ∈  Ring  →  𝑊  ∈  Grp ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Grp ) | 
						
							| 15 | 1 2 3 4 5 6 | asclf | ⊢ ( 𝜑  →  𝐴 : ( Base ‘ 𝐹 ) ⟶ ( Base ‘ 𝑊 ) ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  𝑥  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  𝑦  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 20 | 6 19 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 23 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 24 | 6 8 2 23 5 7 | lmodvsdir | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 )  ∧  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 25 | 16 17 18 22 24 | syl13anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 26 | 5 7 | grpcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) )  →  ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 27 | 26 | 3expb | ⊢ ( ( 𝐹  ∈  Grp  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 28 | 12 27 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 29 | 1 2 5 23 19 | asclval | ⊢ ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 )  ∈  ( Base ‘ 𝐹 )  →  ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) )  =  ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) )  =  ( ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 31 | 1 2 5 23 19 | asclval | ⊢ ( 𝑥  ∈  ( Base ‘ 𝐹 )  →  ( 𝐴 ‘ 𝑥 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 32 | 1 2 5 23 19 | asclval | ⊢ ( 𝑦  ∈  ( Base ‘ 𝐹 )  →  ( 𝐴 ‘ 𝑦 )  =  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 33 | 31 32 | oveqan12d | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) )  →  ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) )  =  ( ( 𝑥 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( +g ‘ 𝑊 ) ( 𝑦 (  ·𝑠  ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 35 | 25 30 34 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( 𝐴 ‘ ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 ) ( +g ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) | 
						
							| 36 | 5 6 7 8 12 14 15 35 | isghmd | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐹  GrpHom  𝑊 ) ) |