Metamath Proof Explorer


Theorem asclinvg

Description: The group inverse (negation) of a lifted scalar is the lifted negation of the scalar. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses asclinvg.a 𝐴 = ( algSc ‘ 𝑊 )
asclinvg.r 𝑅 = ( Scalar ‘ 𝑊 )
asclinvg.k 𝐵 = ( Base ‘ 𝑅 )
asclinvg.i 𝐼 = ( invg𝑅 )
asclinvg.j 𝐽 = ( invg𝑊 )
Assertion asclinvg ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶𝐵 ) → ( 𝐽 ‘ ( 𝐴𝐶 ) ) = ( 𝐴 ‘ ( 𝐼𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 asclinvg.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclinvg.r 𝑅 = ( Scalar ‘ 𝑊 )
3 asclinvg.k 𝐵 = ( Base ‘ 𝑅 )
4 asclinvg.i 𝐼 = ( invg𝑅 )
5 asclinvg.j 𝐽 = ( invg𝑊 )
6 simp2 ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶𝐵 ) → 𝑊 ∈ Ring )
7 simp1 ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶𝐵 ) → 𝑊 ∈ LMod )
8 1 2 6 7 asclghm ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶𝐵 ) → 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) )
9 simp3 ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶𝐵 ) → 𝐶𝐵 )
10 3 4 5 ghminv ( ( 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ∧ 𝐶𝐵 ) → ( 𝐴 ‘ ( 𝐼𝐶 ) ) = ( 𝐽 ‘ ( 𝐴𝐶 ) ) )
11 10 eqcomd ( ( 𝐴 ∈ ( 𝑅 GrpHom 𝑊 ) ∧ 𝐶𝐵 ) → ( 𝐽 ‘ ( 𝐴𝐶 ) ) = ( 𝐴 ‘ ( 𝐼𝐶 ) ) )
12 8 9 11 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶𝐵 ) → ( 𝐽 ‘ ( 𝐴𝐶 ) ) = ( 𝐴 ‘ ( 𝐼𝐶 ) ) )