| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclinvg.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | asclinvg.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | asclinvg.k | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | asclinvg.i | ⊢ 𝐼  =  ( invg ‘ 𝑅 ) | 
						
							| 5 |  | asclinvg.j | ⊢ 𝐽  =  ( invg ‘ 𝑊 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring  ∧  𝐶  ∈  𝐵 )  →  𝑊  ∈  Ring ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring  ∧  𝐶  ∈  𝐵 )  →  𝑊  ∈  LMod ) | 
						
							| 8 | 1 2 6 7 | asclghm | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring  ∧  𝐶  ∈  𝐵 )  →  𝐴  ∈  ( 𝑅  GrpHom  𝑊 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring  ∧  𝐶  ∈  𝐵 )  →  𝐶  ∈  𝐵 ) | 
						
							| 10 | 3 4 5 | ghminv | ⊢ ( ( 𝐴  ∈  ( 𝑅  GrpHom  𝑊 )  ∧  𝐶  ∈  𝐵 )  →  ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝐴  ∈  ( 𝑅  GrpHom  𝑊 )  ∧  𝐶  ∈  𝐵 )  →  ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) )  =  ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 12 | 8 9 11 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring  ∧  𝐶  ∈  𝐵 )  →  ( 𝐽 ‘ ( 𝐴 ‘ 𝐶 ) )  =  ( 𝐴 ‘ ( 𝐼 ‘ 𝐶 ) ) ) |