| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclmul1.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | asclmul1.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | asclmul1.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | asclmul1.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | asclmul1.t | ⊢  ×   =  ( .r ‘ 𝑊 ) | 
						
							| 6 |  | asclmul1.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 8 | 1 2 3 6 7 | asclval | ⊢ ( 𝑅  ∈  𝐾  →  ( 𝐴 ‘ 𝑅 )  =  ( 𝑅  ·  ( 1r ‘ 𝑊 ) ) ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐴 ‘ 𝑅 )  =  ( 𝑅  ·  ( 1r ‘ 𝑊 ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝐴 ‘ 𝑅 )  ×  𝑋 )  =  ( ( 𝑅  ·  ( 1r ‘ 𝑊 ) )  ×  𝑋 ) ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  AssAlg ) | 
						
							| 12 |  | simp2 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝑅  ∈  𝐾 ) | 
						
							| 13 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  Ring ) | 
						
							| 15 | 4 7 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →  ( 1r ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 1r ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 18 | 4 2 3 6 5 | assaass | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  ( 𝑅  ∈  𝐾  ∧  ( 1r ‘ 𝑊 )  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑅  ·  ( 1r ‘ 𝑊 ) )  ×  𝑋 )  =  ( 𝑅  ·  ( ( 1r ‘ 𝑊 )  ×  𝑋 ) ) ) | 
						
							| 19 | 11 12 16 17 18 | syl13anc | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑅  ·  ( 1r ‘ 𝑊 ) )  ×  𝑋 )  =  ( 𝑅  ·  ( ( 1r ‘ 𝑊 )  ×  𝑋 ) ) ) | 
						
							| 20 | 4 5 7 | ringlidm | ⊢ ( ( 𝑊  ∈  Ring  ∧  𝑋  ∈  𝑉 )  →  ( ( 1r ‘ 𝑊 )  ×  𝑋 )  =  𝑋 ) | 
						
							| 21 | 14 17 20 | syl2anc | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ( 1r ‘ 𝑊 )  ×  𝑋 )  =  𝑋 ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝑅  ·  ( ( 1r ‘ 𝑊 )  ×  𝑋 ) )  =  ( 𝑅  ·  𝑋 ) ) | 
						
							| 23 | 10 19 22 | 3eqtrd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝐴 ‘ 𝑅 )  ×  𝑋 )  =  ( 𝑅  ·  𝑋 ) ) |