Step |
Hyp |
Ref |
Expression |
1 |
|
asclmul1.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
asclmul1.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
asclmul1.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
4 |
|
asclmul1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
5 |
|
asclmul1.t |
⊢ × = ( .r ‘ 𝑊 ) |
6 |
|
asclmul1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
8 |
1 2 3 6 7
|
asclval |
⊢ ( 𝑅 ∈ 𝐾 → ( 𝐴 ‘ 𝑅 ) = ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑅 ) = ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 × ( 𝐴 ‘ 𝑅 ) ) = ( 𝑋 × ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) ) |
11 |
|
simp1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ AssAlg ) |
12 |
|
simp2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ∈ 𝐾 ) |
13 |
|
simp3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
14 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ Ring ) |
16 |
4 7
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
18 |
4 2 3 6 5
|
assaassr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ ( 1r ‘ 𝑊 ) ∈ 𝑉 ) ) → ( 𝑋 × ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) = ( 𝑅 · ( 𝑋 × ( 1r ‘ 𝑊 ) ) ) ) |
19 |
11 12 13 17 18
|
syl13anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 × ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) = ( 𝑅 · ( 𝑋 × ( 1r ‘ 𝑊 ) ) ) ) |
20 |
4 5 7
|
ringridm |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 × ( 1r ‘ 𝑊 ) ) = 𝑋 ) |
21 |
15 13 20
|
syl2anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 × ( 1r ‘ 𝑊 ) ) = 𝑋 ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · ( 𝑋 × ( 1r ‘ 𝑊 ) ) ) = ( 𝑅 · 𝑋 ) ) |
23 |
10 19 22
|
3eqtrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 × ( 𝐴 ‘ 𝑅 ) ) = ( 𝑅 · 𝑋 ) ) |