Step |
Hyp |
Ref |
Expression |
1 |
|
asclply1subcl.1 |
⊢ 𝐴 = ( algSc ‘ 𝑉 ) |
2 |
|
asclply1subcl.2 |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
3 |
|
asclply1subcl.3 |
⊢ 𝑉 = ( Poly1 ‘ 𝑅 ) |
4 |
|
asclply1subcl.4 |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
5 |
|
asclply1subcl.5 |
⊢ 𝑃 = ( Base ‘ 𝑊 ) |
6 |
|
asclply1subcl.6 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
|
asclply1subcl.7 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
8
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
11 |
10 7
|
sseldd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑅 ) ) |
12 |
|
subrgrcl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
13 |
3
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑉 ) ) |
14 |
6 12 13
|
3syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑉 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑉 ) ) ) |
16 |
11 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) ) |
17 |
|
eqid |
⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) |
18 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑉 ) ) = ( Base ‘ ( Scalar ‘ 𝑉 ) ) |
19 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ 𝑉 ) |
20 |
|
eqid |
⊢ ( 1r ‘ 𝑉 ) = ( 1r ‘ 𝑉 ) |
21 |
1 17 18 19 20
|
asclval |
⊢ ( 𝑍 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) → ( 𝐴 ‘ 𝑍 ) = ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) ) |
22 |
16 21
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) = ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) ) |
23 |
3 2 4 5
|
subrgply1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑃 ∈ ( SubRing ‘ 𝑉 ) ) |
24 |
|
eqid |
⊢ ( 𝑉 ↾s 𝑃 ) = ( 𝑉 ↾s 𝑃 ) |
25 |
24 19
|
ressvsca |
⊢ ( 𝑃 ∈ ( SubRing ‘ 𝑉 ) → ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ) |
26 |
6 23 25
|
3syl |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ) |
27 |
26
|
oveqd |
⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ( 1r ‘ 𝑉 ) ) ) |
28 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
29 |
20
|
subrg1cl |
⊢ ( 𝑃 ∈ ( SubRing ‘ 𝑉 ) → ( 1r ‘ 𝑉 ) ∈ 𝑃 ) |
30 |
6 23 29
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑉 ) ∈ 𝑃 ) |
31 |
3 2 4 5 6 24
|
ressply1vsca |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ 𝑆 ∧ ( 1r ‘ 𝑉 ) ∈ 𝑃 ) ) → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ( 1r ‘ 𝑉 ) ) ) |
32 |
28 7 30 31
|
syl12anc |
⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ( 1r ‘ 𝑉 ) ) ) |
33 |
27 32
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) ) |
34 |
2
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ∈ Ring ) |
35 |
4
|
ply1lmod |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
36 |
6 34 35
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
37 |
2 8
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
38 |
6 9 37
|
3syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝑈 ) ) |
39 |
7 38
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑈 ) ) |
40 |
2
|
ovexi |
⊢ 𝑈 ∈ V |
41 |
4
|
ply1sca |
⊢ ( 𝑈 ∈ V → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
42 |
40 41
|
ax-mp |
⊢ 𝑈 = ( Scalar ‘ 𝑊 ) |
43 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
44 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
45 |
5 42 43 44
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ ( Base ‘ 𝑈 ) ∧ ( 1r ‘ 𝑉 ) ∈ 𝑃 ) → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) ∈ 𝑃 ) |
46 |
36 39 30 45
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) ∈ 𝑃 ) |
47 |
33 46
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) ∈ 𝑃 ) |
48 |
22 47
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ 𝑃 ) |