Step |
Hyp |
Ref |
Expression |
1 |
|
asclpropd.f |
⊢ 𝐹 = ( Scalar ‘ 𝐾 ) |
2 |
|
asclpropd.g |
⊢ 𝐺 = ( Scalar ‘ 𝐿 ) |
3 |
|
asclpropd.1 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) |
4 |
|
asclpropd.2 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) |
5 |
|
asclpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
6 |
|
asclpropd.4 |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
7 |
|
asclpropd.5 |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ 𝑊 ) |
8 |
5
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑃 ∧ ( 1r ‘ 𝐾 ) ∈ 𝑊 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) ) |
9 |
8
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑊 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) ) |
10 |
7 9
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) ) |
11 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
13 |
10 12
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
14 |
13
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) = ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) ) |
15 |
3
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) ) |
16 |
4
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) ) |
17 |
14 15 16
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) ) |
18 |
|
eqid |
⊢ ( algSc ‘ 𝐾 ) = ( algSc ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) |
21 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
22 |
18 1 19 20 21
|
asclfval |
⊢ ( algSc ‘ 𝐾 ) = ( 𝑧 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) |
23 |
|
eqid |
⊢ ( algSc ‘ 𝐿 ) = ( algSc ‘ 𝐿 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
25 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) |
26 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
27 |
23 2 24 25 26
|
asclfval |
⊢ ( algSc ‘ 𝐿 ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
28 |
17 22 27
|
3eqtr4g |
⊢ ( 𝜑 → ( algSc ‘ 𝐾 ) = ( algSc ‘ 𝐿 ) ) |