| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclrhm.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | asclrhm.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 5 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ 𝑊 ) | 
						
							| 8 | 2 | assasca | ⊢ ( 𝑊  ∈  AssAlg  →  𝐹  ∈  Ring ) | 
						
							| 9 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 10 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 11 | 1 2 10 9 | ascl1 | ⊢ ( 𝑊  ∈  AssAlg  →  ( 𝐴 ‘ ( 1r ‘ 𝐹 ) )  =  ( 1r ‘ 𝑊 ) ) | 
						
							| 12 | 1 2 3 7 6 | ascldimul | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) )  →  ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | 3expb | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) ) )  →  ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) )  =  ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) | 
						
							| 14 | 1 2 9 10 | asclghm | ⊢ ( 𝑊  ∈  AssAlg  →  𝐴  ∈  ( 𝐹  GrpHom  𝑊 ) ) | 
						
							| 15 | 3 4 5 6 7 8 9 11 13 14 | isrhm2d | ⊢ ( 𝑊  ∈  AssAlg  →  𝐴  ∈  ( 𝐹  RingHom  𝑊 ) ) |