Step |
Hyp |
Ref |
Expression |
1 |
|
asclrhm.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
asclrhm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
8 |
2
|
assasca |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ CRing ) |
9 |
8
|
crngringd |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
10 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
11 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
12 |
1 2 11 10
|
ascl1 |
⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝑊 ) ) |
13 |
1 2 3 7 6
|
ascldimul |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
14 |
13
|
3expb |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
15 |
1 2 10 11
|
asclghm |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |
16 |
3 4 5 6 7 9 10 12 14 15
|
isrhm2d |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 RingHom 𝑊 ) ) |