Metamath Proof Explorer


Theorem asclval

Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclfval.a 𝐴 = ( algSc ‘ 𝑊 )
asclfval.f 𝐹 = ( Scalar ‘ 𝑊 )
asclfval.k 𝐾 = ( Base ‘ 𝐹 )
asclfval.s · = ( ·𝑠𝑊 )
asclfval.o 1 = ( 1r𝑊 )
Assertion asclval ( 𝑋𝐾 → ( 𝐴𝑋 ) = ( 𝑋 · 1 ) )

Proof

Step Hyp Ref Expression
1 asclfval.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclfval.f 𝐹 = ( Scalar ‘ 𝑊 )
3 asclfval.k 𝐾 = ( Base ‘ 𝐹 )
4 asclfval.s · = ( ·𝑠𝑊 )
5 asclfval.o 1 = ( 1r𝑊 )
6 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 · 1 ) = ( 𝑋 · 1 ) )
7 1 2 3 4 5 asclfval 𝐴 = ( 𝑥𝐾 ↦ ( 𝑥 · 1 ) )
8 ovex ( 𝑋 · 1 ) ∈ V
9 6 7 8 fvmpt ( 𝑋𝐾 → ( 𝐴𝑋 ) = ( 𝑋 · 1 ) )