Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclfval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
asclfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
asclfval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
asclfval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
asclfval.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
Assertion | asclval | ⊢ ( 𝑋 ∈ 𝐾 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 · 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
2 | asclfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
3 | asclfval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
4 | asclfval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
5 | asclfval.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 1 ) = ( 𝑋 · 1 ) ) | |
7 | 1 2 3 4 5 | asclfval | ⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 1 ) ) |
8 | ovex | ⊢ ( 𝑋 · 1 ) ∈ V | |
9 | 6 7 8 | fvmpt | ⊢ ( 𝑋 ∈ 𝐾 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 · 1 ) ) |