Metamath Proof Explorer


Theorem asincl

Description: Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion asincl ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 asinf arcsin : ℂ ⟶ ℂ
2 1 ffvelrni ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ )