Step |
Hyp |
Ref |
Expression |
1 |
|
df-asin |
⊢ arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ) |
2 |
|
negicn |
⊢ - i ∈ ℂ |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
5 |
3 4
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( i · 𝑥 ) ∈ ℂ ) |
6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
7 |
|
sqcl |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
8 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
9 |
6 7 8
|
sylancr |
⊢ ( 𝑥 ∈ ℂ → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
10 |
9
|
sqrtcld |
⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ∈ ℂ ) |
11 |
5 10
|
addcld |
⊢ ( 𝑥 ∈ ℂ → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ∈ ℂ ) |
12 |
|
asinlem |
⊢ ( 𝑥 ∈ ℂ → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ≠ 0 ) |
13 |
11 12
|
logcld |
⊢ ( 𝑥 ∈ ℂ → ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
14 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ∈ ℂ ) → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ∈ ℂ ) |
15 |
2 13 14
|
sylancr |
⊢ ( 𝑥 ∈ ℂ → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ∈ ℂ ) |
16 |
1 15
|
fmpti |
⊢ arcsin : ℂ ⟶ ℂ |