| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 6 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 7 |
4 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 |
7
|
sqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 |
3 8
|
subnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 10 |
8
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 11 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 12 |
|
0cnd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) |
| 13 |
|
1cnd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 14 |
|
subcan2 |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 0 − ( 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ↔ 0 = 1 ) ) |
| 15 |
14
|
necon3bid |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 0 − ( 𝐴 ↑ 2 ) ) ≠ ( 1 − ( 𝐴 ↑ 2 ) ) ↔ 0 ≠ 1 ) ) |
| 16 |
12 13 5 15
|
syl3anc |
⊢ ( 𝐴 ∈ ℂ → ( ( 0 − ( 𝐴 ↑ 2 ) ) ≠ ( 1 − ( 𝐴 ↑ 2 ) ) ↔ 0 ≠ 1 ) ) |
| 17 |
11 16
|
mpbiri |
⊢ ( 𝐴 ∈ ℂ → ( 0 − ( 𝐴 ↑ 2 ) ) ≠ ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 18 |
|
sqmul |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 19 |
1 18
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 20 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
| 21 |
20
|
oveq1i |
⊢ ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) |
| 22 |
5
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 23 |
21 22
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 24 |
19 23
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 25 |
|
df-neg |
⊢ - ( 𝐴 ↑ 2 ) = ( 0 − ( 𝐴 ↑ 2 ) ) |
| 26 |
24 25
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( 0 − ( 𝐴 ↑ 2 ) ) ) |
| 27 |
|
sqneg |
⊢ ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ → ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) |
| 28 |
8 27
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) |
| 29 |
7
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 30 |
28 29
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 31 |
17 26 30
|
3netr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) ≠ ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) |
| 32 |
|
oveq1 |
⊢ ( ( i · 𝐴 ) = - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) → ( ( i · 𝐴 ) ↑ 2 ) = ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) |
| 33 |
32
|
necon3i |
⊢ ( ( ( i · 𝐴 ) ↑ 2 ) ≠ ( - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) → ( i · 𝐴 ) ≠ - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 34 |
31 33
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ≠ - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 35 |
3 10 34
|
subne0d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 36 |
9 35
|
eqnetrrd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |