| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red | ⊢ ( 𝐴  ∈  ℂ  →  0  ∈  ℝ ) | 
						
							| 2 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 3 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 4 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  - 𝐴  ∈  ℂ ) | 
						
							| 6 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( i  ·  - 𝐴 )  ∈  ℂ ) | 
						
							| 7 | 3 5 6 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( i  ·  - 𝐴 )  ∈  ℂ ) | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 | 5 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( - 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 10 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( - 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  −  ( - 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 1  −  ( - 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 12 | 11 | sqrtcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 13 | 7 12 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 14 |  | asinlem | ⊢ ( - 𝐴  ∈  ℂ  →  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) )  ≠  0 ) | 
						
							| 15 | 5 14 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) )  ≠  0 ) | 
						
							| 16 | 13 15 | absrpcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  ∈  ℝ+ ) | 
						
							| 17 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 18 |  | rpexpcl | ⊢ ( ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 )  ∈  ℝ+ ) | 
						
							| 20 | 19 | rprecred | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 21 | 13 | cjcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  ∈  ℂ ) | 
						
							| 22 | 21 | recld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 23 | 19 | rpreccld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ∈  ℝ+ ) | 
						
							| 24 | 23 | rpge0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) | 
						
							| 25 |  | imneg | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ - 𝐴 )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ - 𝐴 )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 27 | 2 | le0neg2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( ℑ ‘ 𝐴 )  ↔  - ( ℑ ‘ 𝐴 )  ≤  0 ) ) | 
						
							| 28 | 27 | biimpa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  - ( ℑ ‘ 𝐴 )  ≤  0 ) | 
						
							| 29 | 26 28 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ - 𝐴 )  ≤  0 ) | 
						
							| 30 |  | asinlem3a | ⊢ ( ( - 𝐴  ∈  ℂ  ∧  ( ℑ ‘ - 𝐴 )  ≤  0 )  →  0  ≤  ( ℜ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 31 | 5 29 30 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( ℜ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 32 | 13 | recjd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) )  =  ( ℜ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 33 | 31 32 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( ℜ ‘ ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 34 | 20 22 24 33 | mulge0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ℜ ‘ ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | 
						
							| 35 |  | recval | ⊢ ( ( ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) )  ∈  ℂ  ∧  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) )  ≠  0 )  →  ( 1  /  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  =  ( ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) | 
						
							| 36 | 13 15 35 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 1  /  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  =  ( ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) | 
						
							| 37 |  | asinlem2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ·  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  =  1 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ·  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  =  1 ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  1  =  ( ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ·  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 40 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  1  ∈  ℂ ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 42 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 43 | 3 41 42 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 44 |  | sqcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 46 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 47 | 8 45 46 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 48 | 47 | sqrtcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 49 | 43 48 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 50 | 40 49 13 15 | divmul3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( 1  /  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  =  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ↔  1  =  ( ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ·  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 51 | 39 50 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( 1  /  ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  =  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 52 | 19 | rpcnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 53 | 19 | rpne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 )  ≠  0 ) | 
						
							| 54 | 21 52 53 | divrec2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) )  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  =  ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 55 | 36 51 54 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  =  ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) )  =  ( ℜ ‘ ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | 
						
							| 57 | 20 21 | remul2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) )  =  ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ℜ ‘ ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | 
						
							| 58 | 56 57 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) )  =  ( ( 1  /  ( ( abs ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) )  ·  ( ℜ ‘ ( ∗ ‘ ( ( i  ·  - 𝐴 )  +  ( √ ‘ ( 1  −  ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) | 
						
							| 59 | 34 58 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ≤  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 60 |  | asinlem3a | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  0  ≤  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 61 | 1 2 59 60 | lecasei | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) |