Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℝ ) |
2 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → - 𝐴 ∈ ℂ ) |
6 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) ∈ ℂ ) |
7 |
3 5 6
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( i · - 𝐴 ) ∈ ℂ ) |
8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
9 |
5
|
sqcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( - 𝐴 ↑ 2 ) ∈ ℂ ) |
10 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( - 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( - 𝐴 ↑ 2 ) ) ∈ ℂ ) |
11 |
8 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 − ( - 𝐴 ↑ 2 ) ) ∈ ℂ ) |
12 |
11
|
sqrtcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
13 |
7 12
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
14 |
|
asinlem |
⊢ ( - 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
15 |
5 14
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
16 |
13 15
|
absrpcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ+ ) |
17 |
|
2z |
⊢ 2 ∈ ℤ |
18 |
|
rpexpcl |
⊢ ( ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ∈ ℝ+ ) |
19 |
16 17 18
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ∈ ℝ+ ) |
20 |
19
|
rprecred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ∈ ℝ ) |
21 |
13
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
22 |
21
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ∈ ℝ ) |
23 |
19
|
rpreccld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ∈ ℝ+ ) |
24 |
23
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) |
25 |
|
imneg |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
27 |
2
|
le0neg2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℑ ‘ 𝐴 ) ↔ - ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
28 |
27
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ 𝐴 ) ≤ 0 ) |
29 |
26 28
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ - 𝐴 ) ≤ 0 ) |
30 |
|
asinlem3a |
⊢ ( ( - 𝐴 ∈ ℂ ∧ ( ℑ ‘ - 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
31 |
5 29 30
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
32 |
13
|
recjd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) = ( ℜ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
33 |
31 32
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
34 |
20 22 24 33
|
mulge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
35 |
|
recval |
⊢ ( ( ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) → ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) |
36 |
13 15 35
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) ) |
37 |
|
asinlem2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) |
38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = 1 ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 1 = ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) |
40 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 1 ∈ ℂ ) |
41 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
42 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
43 |
3 41 42
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( i · 𝐴 ) ∈ ℂ ) |
44 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
46 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
47 |
8 45 46
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
48 |
47
|
sqrtcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
49 |
43 48
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
50 |
40 49 13 15
|
divmul3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ↔ 1 = ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) · ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
51 |
39 50
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( 1 / ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
52 |
19
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ∈ ℂ ) |
53 |
19
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ≠ 0 ) |
54 |
21 52 53
|
divrec2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
55 |
36 51 54
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) |
56 |
55
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ℜ ‘ ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
57 |
20 21
|
remul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
58 |
56 57
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 1 / ( ( abs ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ∗ ‘ ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
59 |
34 58
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ≤ ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
60 |
|
asinlem3a |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
61 |
1 2 59 60
|
lecasei |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |