| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 3 | 2 | renegcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  - ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 |  | sqcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 7 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 9 | 8 | sqrtcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 10 | 9 | recld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ∈  ℝ ) | 
						
							| 11 | 1 | le0neg1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ 𝐴 )  ≤  0  ↔  0  ≤  - ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  0  ≤  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 13 | 8 | sqrtrege0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  0  ≤  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 14 | 3 10 12 13 | addge0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  0  ≤  ( - ( ℑ ‘ 𝐴 )  +  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 15 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 16 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 17 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 18 | 15 16 17 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 19 | 18 9 | readdd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) )  =  ( ( ℜ ‘ ( i  ·  𝐴 ) )  +  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 20 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 21 |  | mulcl | ⊢ ( ( - i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 22 | 20 16 21 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( - i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 23 | 22 | renegd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ - ( - i  ·  𝐴 ) )  =  - ( ℜ ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 24 | 15 | negnegi | ⊢ - - i  =  i | 
						
							| 25 | 24 | oveq1i | ⊢ ( - - i  ·  𝐴 )  =  ( i  ·  𝐴 ) | 
						
							| 26 |  | mulneg1 | ⊢ ( ( - i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - - i  ·  𝐴 )  =  - ( - i  ·  𝐴 ) ) | 
						
							| 27 | 20 16 26 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( - - i  ·  𝐴 )  =  - ( - i  ·  𝐴 ) ) | 
						
							| 28 | 25 27 | eqtr3id | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( i  ·  𝐴 )  =  - ( - i  ·  𝐴 ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ ( i  ·  𝐴 ) )  =  ( ℜ ‘ - ( - i  ·  𝐴 ) ) ) | 
						
							| 30 |  | imre | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  =  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℑ ‘ 𝐴 )  =  ( ℜ ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 32 | 31 | negeqd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  - ( ℑ ‘ 𝐴 )  =  - ( ℜ ‘ ( - i  ·  𝐴 ) ) ) | 
						
							| 33 | 23 29 32 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ ( i  ·  𝐴 ) )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ( ℜ ‘ ( i  ·  𝐴 ) )  +  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) )  =  ( - ( ℑ ‘ 𝐴 )  +  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 35 | 19 34 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) )  =  ( - ( ℑ ‘ 𝐴 )  +  ( ℜ ‘ ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) | 
						
							| 36 | 14 35 | breqtrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ≤  0 )  →  0  ≤  ( ℜ ‘ ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) ) |