Metamath Proof Explorer


Theorem asinrebnd

Description: Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrebnd ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )

Proof

Step Hyp Ref Expression
1 resinf1o ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 )
2 f1ocnv ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) → ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) )
3 f1of ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) )
4 1 2 3 mp2b ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) )
5 4 ffvelrni ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
6 5 fvresd ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = ( sin ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) )
7 f1ocnvfv2 ( ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ∧ 𝐴 ∈ ( - 1 [,] 1 ) ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 )
8 1 7 mpan ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 )
9 6 8 eqtr3d ( 𝐴 ∈ ( - 1 [,] 1 ) → ( sin ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 )
10 9 fveq2d ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ ( sin ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) )
11 reasinsin ( ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) )
12 5 11 syl ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ ( sin ‘ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) )
13 10 12 eqtr3d ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) = ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) )
14 13 5 eqeltrd ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )