Step |
Hyp |
Ref |
Expression |
1 |
|
resinf1o |
⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) |
2 |
|
f1ocnv |
⊢ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) → ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
3 |
|
f1of |
⊢ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) → ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) |
5 |
4
|
ffvelrni |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
6 |
5
|
fvresd |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) |
7 |
|
f1ocnvfv2 |
⊢ ( ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ∧ 𝐴 ∈ ( - 1 [,] 1 ) ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 ) |
8 |
1 7
|
mpan |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 ) |
9 |
6 8
|
eqtr3d |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 ) |
10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) ) |
11 |
|
reasinsin |
⊢ ( ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) |
12 |
5 11
|
syl |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) |
13 |
10 12
|
eqtr3d |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) = ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) |
14 |
13 5
|
eqeltrd |
⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |