Metamath Proof Explorer


Theorem asinrecl

Description: The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrecl ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 halfpire ( π / 2 ) ∈ ℝ
2 1 renegcli - ( π / 2 ) ∈ ℝ
3 iccssre ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ )
4 2 1 3 mp2an ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ
5 asinrebnd ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
6 4 5 sselid ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ )