Description: The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | asinrecl | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
2 | 1 | renegcli | ⊢ - ( π / 2 ) ∈ ℝ |
3 | iccssre | ⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) | |
4 | 2 1 3 | mp2an | ⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
5 | asinrebnd | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
6 | 4 5 | sselid | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ ) |