Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 1 − ( 𝑥 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
5 |
1 4
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
8 |
|
df-asin |
⊢ arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ) |
9 |
|
ovex |
⊢ ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |