| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a | ⊢ 𝐴  =  ( AlgSpan ‘ 𝑊 ) | 
						
							| 2 |  | aspval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | aspval.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  𝑊  ∈  AssAlg ) | 
						
							| 5 | 2 | subrgss | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 7 | 1 2 3 | aspval | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 } ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  ( 𝐴 ‘ 𝑆 )  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 } ) | 
						
							| 9 |  | 3simpc | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 ) ) | 
						
							| 10 |  | elin | ⊢ ( 𝑆  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ↔  ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  𝑆  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 ) ) | 
						
							| 12 |  | intmin | ⊢ ( 𝑆  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 }  =  𝑆 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 }  =  𝑆 ) | 
						
							| 14 | 8 13 | eqtrd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑆  ∈  𝐿 )  →  ( 𝐴 ‘ 𝑆 )  =  𝑆 ) |