Step |
Hyp |
Ref |
Expression |
1 |
|
aspval.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) |
2 |
|
aspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
aspval.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
4 |
1 2 3
|
aspval |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
5 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
7 |
|
ssrab2 |
⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) |
8 |
|
inss2 |
⊢ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ⊆ 𝐿 |
9 |
7 8
|
sstri |
⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ 𝐿 |
10 |
9
|
a1i |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ 𝐿 ) |
11 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑆 ) ∈ V |
12 |
4 11
|
eqeltrrdi |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
13 |
|
intex |
⊢ ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ↔ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ) |
15 |
3
|
lssintcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ⊆ 𝐿 ∧ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ 𝐿 ) |
16 |
6 10 14 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ 𝐿 ) |
17 |
4 16
|
eqeltrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐿 ) |