Metamath Proof Explorer


Theorem aspss

Description: Span preserves subset ordering. ( spanss analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a 𝐴 = ( AlgSpan ‘ 𝑊 )
aspval.v 𝑉 = ( Base ‘ 𝑊 )
Assertion aspss ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → ( 𝐴𝑇 ) ⊆ ( 𝐴𝑆 ) )

Proof

Step Hyp Ref Expression
1 aspval.a 𝐴 = ( AlgSpan ‘ 𝑊 )
2 aspval.v 𝑉 = ( Base ‘ 𝑊 )
3 simpl3 ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) ∧ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ) → 𝑇𝑆 )
4 sstr2 ( 𝑇𝑆 → ( 𝑆𝑡𝑇𝑡 ) )
5 3 4 syl ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) ∧ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ) → ( 𝑆𝑡𝑇𝑡 ) )
6 5 ss2rabdv ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ⊆ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇𝑡 } )
7 intss ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ⊆ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇𝑡 } → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇𝑡 } ⊆ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } )
8 6 7 syl ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇𝑡 } ⊆ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } )
9 simp1 ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → 𝑊 ∈ AssAlg )
10 simp3 ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → 𝑇𝑆 )
11 simp2 ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → 𝑆𝑉 )
12 10 11 sstrd ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → 𝑇𝑉 )
13 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
14 1 2 13 aspval ( ( 𝑊 ∈ AssAlg ∧ 𝑇𝑉 ) → ( 𝐴𝑇 ) = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇𝑡 } )
15 9 12 14 syl2anc ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → ( 𝐴𝑇 ) = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇𝑡 } )
16 1 2 13 aspval ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } )
17 16 3adant3 ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → ( 𝐴𝑆 ) = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } )
18 8 15 17 3sstr4d ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉𝑇𝑆 ) → ( 𝐴𝑇 ) ⊆ ( 𝐴𝑆 ) )