Metamath Proof Explorer


Theorem aspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a 𝐴 = ( AlgSpan ‘ 𝑊 )
aspval.v 𝑉 = ( Base ‘ 𝑊 )
Assertion aspssid ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( 𝐴𝑆 ) )

Proof

Step Hyp Ref Expression
1 aspval.a 𝐴 = ( AlgSpan ‘ 𝑊 )
2 aspval.v 𝑉 = ( Base ‘ 𝑊 )
3 ssintub 𝑆 { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 }
4 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
5 1 2 4 aspval ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } )
6 3 5 sseqtrrid ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( 𝐴𝑆 ) )